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STATISTICAL PRACTlCE 
This department publishes articles of interest to statistical practition- 

ers. Innovative applications of known methodology may be suitable, 
but sizable case studies should be submitted to other journals. Brief 

descriptions and illustrations of new developments that are potentially 
useful in statistical practice are appropriate. Acceptable articles should 
appeal to a substantial number of practitioners. 

Hasse Diagrams in Statistical Consulting and Teaching 
Sharon L. LOHR 

Hasse diagrams summarize the structure of mixed models 
and can be used by a statistical consultant to help design a 
complicated experiment or to help clarify the structure of 
data to be analyzed. They are also useful in the classroom 
as an aid for obtaining expected mean squares or deciding 
which denominator should be used in an F statistic. 

KEY WORDS: Expected mean squares; Experiment 
design; Mixed model; Poset diagram. 

1. INTRODUCTION 
Statisticians often use a mixed model in their quest to 

obtain a simple structure to summarize a data set. The class 
of mixed models includes both fixed effects and random 
effects models; in the former the error term is the only 
random factor, and in the latter the overall mean is the 
only fixed factor. 

Statistical package procedures such as SAS PROC 
GLM and BMDP-8V have considerably simplified the 
task of analyzing the data from a mixed-model ANOVA 
experiment. None of these programs, however, helps with 
specifying the model; a PROC GLM user who types in 
the wrong model will merely have faster incorrect results 
than if the calculations were done by hand. 

Hasse diagrams, also known as poset or factor struc- 
ture diagrams, can help in thinking about the structure of 
the experiment. They can also provide a quick check on 
the "reasonableness" of the computer results, sometimes 
giving clues that the model used in the analysis given by 
the computer is not the one that the data analyst thought 
was being used. They are useful in teaching others about 
design of experiments: because they are visual rather than 
analytic, they give students a supplementary perspective 
on different designs. 

Hasse diagrams are widely used in combinatorics to 
display partially ordered sets. The combinatorial struc- 
ture of factors in orthogonal ANOVA-type designs has 
long been known and exploited: see, for example, Taylor 
and Hilton (1981), Tjur (1984), Speed and Bailey (1987), 
and Andersson (1990). All of these authors used Hasse 
diagrams to display orthogonal designs; Taylor and Hilton 

(1981) and Tjur (1984) illustrated how to use the diagrams 
to calculate sums of squares and degrees of freedom in 
orthogonal designs. Lindman (1992) displayed the hier- 
archical factor structure for some of his examples using 
Hasse diagrams. 

In Section 2 of this paper the simple procedure for cons- 
tructing the basic Hasse diagram for any ANOVA-type 
design is presented, assuming that the model structure 
is known. The basic Hasse diagram, showing the factor 
structure and degrees of freedom, can be constructed for 
nonorthogonal designs such as balanced incomplete block 
designs and factorials with unequal cell sizes, as well as 
for the orthogonal designs considered in the work cited 
above. This procedure can be taught in any data analysis 
class without having to discuss the underlying mathema- 
tics of partially ordered sets and distributive lattices; the 
reader interested in further exploration of the combinato- 
rial structures is referred to Fishburn (1985). 

Section 3 gives three examples of consulting sessions 
in which Hasse diagrams were used to help clarify the 
structure of the experiment. In Section 4 Hasse diagrams 
are used as a pedagogical aid to find sums of squares, 
expected mean squares, and the appropriate hypothesis 
test under normal theory for the null hypothesis that a 
given factor does not contribute to the variability of the 
data. Section 4 applies only to orthogonal mixed model 
designs such as full or fractional replicates of completely 
balanced factorial designs, randomized complete block 
designs, nested designs, Latin and Graeco-Latin squares, 
and balanced split-plot designs. 

2. DRAWING THE DIAGRAM WHEN 
THE MODEL IS KNOWN 

Consider a balanced two-way ANOVA experiment in 
which fixed factor A has two levels, random factor B has 
three levels, and there are two measurements at each level 
of A and B. A hypothetical set of data for such an experi- 
ment is shown in Figure la. 

The model for this experiment contains five factors, cor- 
responding to the five terms in the linear model 

Yijk = /1 + ai + oj + (a3)qj + 6ijk (1) 

where i = 1, .. , a;j = 1,. . . , b; andk = 1,. . . , n. Besides 
the factors A and B and their interaction AB, there are the 
trivial factors M (for mean) and E (the error factor). 

The partial order < for a Hasse diagram comes from the 
nesting in a design. If factor F2 is nested in factor Fl, then 
F2 < Fl. In the Hasse diagram each factor is represented 
by a vertex. If F2 < Fl, then F2 is below F1 and connected 
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B (random) 

1 2 3 

A (fixed) 1 1 2 3 4 5 6 

2 7 11 8 10 9 12 

(a) 

ll'fl af~~~N507 

A2 (B)3 A615 (g)s522.5 

(AB )6 (AB )634 

l l 
(.E) 12 

(.E)650 

(b) (c) 

Figure 1. (a) Data, (b) Basic Hasse Diagram, and (c) Sums 
of Squares Calculations for the Sample Mixed Model Experiment 
Described in Section 2. 

to it by a path; if F1 and F2 are crossed factors, then no 
such one-way path exists. The partial ordering for the 
experiment described above is 

E<AB<A<M, E<AB<B<M. 

Note that the interaction AB is nested in both A and in B, 
but factors A and B are crossed. The steps for constructing 
the basic Hasse diagram are given below, and illustrated 
in Figure lb. 

Step 1. Write down M at the top and E at the bottom. 
Thus the coarsest summary is at the top and the finest 
summary is at the bottom, just as in the ANOVA table. 
All other factors are then drawn between M and E. In a 
factorial design the main effects will be crossed on the first 
level, two-factor interactions on the second, three-factor 
interactions on the third, etc. In a completely nested design 
the factors will form a chain from top to bottom. 

In the current example, A and B are crossed with each 
other but nested in M, so separate lines are drawn connect- 
ing M to A and M to B. Because AB is nested in both A and 
B, lines show that nesting as well. A final line connects 
E, which is nested within all the other factors, with AB. 

Step 2. Put parentheses around the random factors. 
The error factor E is always random. Any factor between 
two random factors in a chain is automatically random. 
For the example in Figure 1 the interaction AB is random 
because it is between the random factors B and E. 

Step 3. For each factor in the diagram, enter the num- 
ber of factor levels as the superscript. In Figure lb there 
is one level for the mean, six (the number of cells in the 
two-way table) levels for the AB interaction, and 12 (the 
number of observations) levels for E. 

Step 4. Enter the degrees of freedom as the subscript 
for each level. Start at the top with one degree of freedom 
for the mean. Then work down through the other factors 
from top to bottom: for any factor F, 

subscript of F = superscript of F 

- (sum of all subscripts of factors above F). (2) 

(_B)6 4i3 D (B) 2 D3 

(IB)j" (DB)24 
DlUl 2 

(E)72 

Figure 2. Hasse Diagram for Split-Plot Experiment in Snedecor 
and Cochran (1980, pp. 326-328). 

Steps 1-4 can be used to construct the basic Hasse dia- 
gram for any standard design, whether orthogonal or not. 
Figure 2 shows the diagram for a split-plot experiment 
described in Snedecor and Cochran (1980, pp. 326-328). 
The whole plot treatments (factor V) are three different va- 
rieties of alfalfa, and the subplot treatments (factor D) are 
four different dates of final cutting. The six replications 
(blocks) of the whole plots comprise factor B. The repli- 
cates and error term are both random, and so are placed 
in parentheses. In many split-plot experiments the factor 
corresponding to DB would be omitted from the diagram, 
so the three-factor interaction (here labeled as E) would be 
used as the subplot error. In this case, though, Snedecor 
and Cochran (1980, p. 327) note that, "since date of cut- 
ting effects are large in this experiment, we have reason 
to expect that the DB mean square will be larger than the 
VDB mean square, as was the case." 

3. EXAMPLES: HASSE DIAGRAMS IN 
CONSULTING 

The procedure in Section 2 for drawing Hasse diagrams 
assumes that the statistician knows the model before draw- 
ing the first line of the diagram. In a consulting session, 
though, the statistician often needs to extract the struc- 
ture of the experiment as the investigator is describing 
it. Hasse diagrams allow the statistical consultant to keep 
track of various factors and their relationships as they are 
described, and to sketch out possible models on the spot. 

The diagrams help the consultant with one of the biggest 
statistical problems investigators face: different sizes of 
experimental units. Many researchers have learned about 
cluster samples or split-plot designs in classes, but do not 
recognize their own experiment as such. Hurlbert (1984, 
p. 208) stated that "Pseudoreplication is probably the sin- 
gle most common fault in the design and analysis of eco- 
logical field experiments," and his statement applies to 
many other disciplines as well. The consultant is often 
able to see a split-plot or repeated-measure structure or 
nesting more easily by using a Hasse diagram than by tak- 
ing notes with words, by trying to write down the mathe- 
matical model during the session, or by simply trying to 
remember everything. 

The investigator will often ask about the Hasse dia- 
grams while the statistician is taking notes; this provides 
an opportunity to explain some of the replication issues 
in an easy-to-understand graphical manner without using 
subscripted Greek letters or having to provide a label for 
the design. In this respect the Hasse diagrams fit in well 
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with the no-name approach advocated by Lorenzen and 
Anderson (1993). 

The remainder of this section gives three examples of 
consulting sessions in which the author used Hasse dia- 
grams. The conversations have been edited for brevity. 

Examnple 1. Investigator: I'm writing a dissertation 
on teacher workload in Arizona, to see what the actual 
workload is and whether it can be predicted by some of 
the teacher workload formulas that have been developed. 

Statistician: What do you mean by workload: the num- 
ber of classes taught, the number of hours worked, or what? 

Investigator: Workload is the number of hours a teacher 
spends on school-related activities in a typical week. The 
formulas that have been developed predict workload from 
number of classes taught, extracurricular activities, and 
other factors. I want to take a survey of elementary school 
teachers to see how much they actually work and to vali- 
date the formulas. 

Statistician: How were you thinking about selecting 
teachers for your sample? 

Investigator: Well, I had thought about just taking a 
random sample of teachers in the state, but there is no list 
of all the teachers. But once I contact a school, the site 
administrator can give me a list of all the teachers. 

Statistician: So you want to take a sample of schools? 
Do you want to be able to compare workloads for different 
areas of the state? [Draws Fig. 3a.] 

Investigator: Actually, I want to compare workloads for 
schools in large, medium, and small school districts. The 
district size is defined by the average daily student mem- 
bership. The largest districts are in urban areas and the 
smallest in rural, so I will be able to look at the difference 
between urban and rural areas. 

Statistician: Does that mean you would need to look at 
schools by district? 

Investigator: Yes, it would. I suspect that workload will 
be different in the different sizes of school districts. 

Statistician: Let's talk a bit about how you're going to 
choose the schools to be in your sample. 

Investigator: Well, most studies select schools using 
a systematic sample, and I'd like to follow precedent. I 
want to stratify schools by the total daily membership of 
the district. Then I'd like to list the schools within each 
school district for each stratum. Then I'd like to take a 
10% sample. 

A4 

District Size3 

Schools District Size2 
I ~ (Districts) l 

(Teachers) I (Schools) 
(Schools) I 

I ~~~(Teachers) 
(Teachers) 

(a) (b) (c) 

Figure 3. Hasse Diagrams Used in Consulting Session for 
Teacher Workload Study. 

Statistician: So you have strata, and then you're select- 
ing districts from each stratum, schools from each dis- 
trict, and then all the teachers from each school? [Draws 
Fig. 3b.] 

Investigator: I don't think that's quite it. I'm using 
district size for the strata, and then taking a subsample of 
schools from each of the three groups of schools. 

Statistician: [Draws Fig. 3c.] Let's talk a little about 
what your sample sizes need to be, and how you're going 
to get a good response rate .... 

Example 2. Investigator: I'm studying the effects 
of feral pigs on the native vegetation in Santa Cruz Is- 
land, Califormia [gives background of the island; see Peart 
(1994)]. 

Statistician: What do your data look like? 
Investigator: I've been following areas around ten oak 

trees on the island since 1989. Under the canopy of each 
tree, volunteers from The Nature Conservancy built 36- 
square-meter exclosures that keep pigs out but let all of 
the other mammals and birds of the island in. Next to each 
exclosure, we staked out an area of equal size, but did not 
put up any barriers. This is what makes SCI ideal for this 
study-if we did it on the mainland, we'd have to worry 
about whether the damage was caused by feral pigs, deer, 
sheep, cattle, or pocket gophers. Of those animals, only 
pigs wander around on SCI. Every three to six months 
I visit all ten sites and record the amount and location 
of seedlings and other vegetation, and also measure the 
amount of pig activity. 

Statistician: So you have two plots for each tree: one 
fenced and one unfenced? [Draws Fig. 4a.] 

Investigator: No, I have four plots: I have another pair 
of plots, one fenced and one unfenced, about 15 feet away 
from each tree not under its canopy. 

Statistician: Let me see if I'm understanding you cor- 
rectly. Is this a typical tree with its plots? [Draws Fig. 4b.] 

Fence2 U F 

(a) (b) 

Fence2 Canopy2 (Trees)'0 

< FC4 / 

Fence2 Canopv,- (E)2? 

(c) (d) 

Figure 4. Hasse Diagrams Used in Consulting Session for Oak 
Seedling Study. 
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Investigator: Yes, except I don't always have them lined 
up like that, and the control plots can be on either side of 
the exclosures. 

Statistician: [Draws Fig. 4c.] When you chose the in- 
dividual trees for the study, did you choose them because 
of specific properties such as this one's close to water, this 
one's at a higher elevation, or did you just want trees that 
are representative of all oaks on the island? 

Investigator: I think I have trees that are representative 
of the oaks on the island. 

Statistician: [Draws Fig. 4d.] What are you trying to 
find out from the data? 

Investigator: I want to see whether the pigs are inhibit- 
ing woody seedling germination, development, and sur- 
vival, and whether they are affecting the mix of native and 
exotic plants. I've run some preliminary t tests on the 
data under the canopy, and the results are overwhelmingly 
significant. 

Statistician: These p values certainly do look signifi- 
cant, but I think that may be because the computer package 
you're using doesn't distinguish between different types 
of experimental units. One of the basic assumptions of the 
t test is that all the observations are independent, and that 
doesn't happen for your data since successive measure- 
ments on the same tree are likely to be more similar than 
measurements on different trees. If we look schematically 
at your design, you really have ten experimental units, the 
ten trees. Within each tree you're looking at the effect of 
the fences and the effect of being under the canopy, and 
you also may have an interaction-keeping pigs out may 
have more of an effect under the canopy than away from 
the tree. So if you were running an ANOVA on some sum- 
mary measure such as average number of seedlings over 
time, you would only have 27 degrees of freedom for the 
error term. 

Example 3. Investigator: This study is designed to 
answer the question: "Does the period of wearing time 
have an effect on the tests we use to fit hearing aids?" As 
people get used to wearing a hearing aid, data show that 
there may be an improvement in their scores on speech 
understanding because people learn to recognize speech 
cues that they had previously not been hearing. Not 
all researchers see such a long-term effect, however. I 
want to design a new study, using each person as his 
or her own control. Knowing my population, I could 
come up with 30 people who could complete a series of 
sessions. 

Statistician: What kind of study do you have in mind? 
Investigator: I'd like to get people who have never worn 

a hearing aid before and test their speech understanding. 
They come back two days later, and we repeat the mea- 
surements so I can get an idea of the variability of each 
individual. Then I send them off with a hearing aid in 
each ear and have them repeat the measurements over 
a period of time to look for a possible acclimatization 
effect. 

Statistician: Why have everyone start without a hear- 
ing aid and then wear them in both ears? Why not send 
each person home with one hearing aid to get used to, and 
then be able to compare the ear that has been wearing the 

hearing aid with the ear that has not been wearing a hear- 
ing aid? It seems that then you would eliminate much of 
the variability between subjects. 

Investigator: The problem is that it is very difficult to 
find people who have similar hearing losses in each ear. A 
previous researcher did what you're describing, and only 
found four subjects who qualified for the study. I also 
want to study two types of hearing aid, to see if one has a 
greater effect than the other. I thought about having each 
subject wear both types of hearing aids, first one type, then 
the other in random order, but decided that would make 
the experiment too long. So I thought I'd use 15 people 
for each type of hearing aid. 

Statistician: So you have two different types of hearing 
aids, and each subject is only going to be wearing one 
type of hearing aid, but wearing that type of aid in each 
ear? 

Investigator: Right. 
Statistician: Are you interested in the individual sub- 

jects per se? Are you deliberately picking them so that 
subject A has a specific hearing loss and subject B has a 
different hearing loss, etc.? 

Investigator: I'm going to have a reasonably homoge- 
neous group, and randomly assign half to each hearing aid. 

Statistician: [Draws Fig. 5a.] Here I've drawn type of 
hearing aid, and I've put subjects below the type because 
any subject belongs conipletely to the group using that one 
type of hearing aid. 

Investigator: And this is the number of subjects? 
Statistician: That's the number of degrees of freedom 

for subjects. 
Investigator: There's one more twist in that I'm letting 

people adjust the volume level. I want to do two tests: 
one in which the volume is fixed, and the other in which 
I allow the patient to adjust the volume. So in effect we 
have three treatment groups: the original measurement, 
with fixed volume, and with adjustable volume. 

Statistician: [Draws Fig. Sb.] But aren't you looking at 
the difference between the measurement with the hearing 
aid and that without as your response? [Draws Fig. Sc as a 
possible altemative to 5b.] I'm a little worried here about 
the possibility that, with the different volume settings done 
on the same patient, you may get a carryover effect. How 
will you know in this experiment whether you're getting 
an acclimatization to the hearing aid or whether people are 
getting better at the speech test? 

Investigator: Well, I was concerned about that, too. I'd 
like to randomize the order in which the volume settings 

Aid' AidE Trt3 Aid2 Volume2 

(Sub 3 (Subjects)30 AT26 (Subject)30 AV4 

(E)90 (E)9s 

(a) (b) (c) 

Figure 5. Hasse Diagram Used in Consulting Session for Hearing 
Aid Study 
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are done to try to minimize that problem. But I don't see 
how to look for acclimatization without giving people the 
same basic speech test over a period of time. And that 
will give me an idea about the variability in our speech 
testing. 

Statistician: I think this sounds like a really interesting 
study. You might want to get some data on the reliability 
of your speech tests before doing the rest of the study. You 
could do that using your current patients or patients who 
don't qualify for your new study. 

4. SUMS OF SQUARES, EXPECTED MEAN 
SQUARES, AND HYPOTHESIS TESTS FOR 

ORTHOGONAL DESIGNS 

The most useful parts of Hasse diagrams for consulting 
sessions were described in Section 2 and demonstrated 
in Section 3. Hasse diagrams can also be used as a tool 
for teaching other calculations in a design course. Most 
calculations that can be done using Hasse diagrams are 
also found in various statistical software packages, but the 
Hasse diagrams provide an additional visual perspective 
that many students find helpful. Note that, although the 
basic Hasse diagram can be drawn for any design, simple 
algorithms for calculating sums of squares and expected 
mean squares only exist for orthogonal designs. Unba- 
lanced data require that some effects be adjusted for the 
contribution of other effects and such adjustments are best 
done using the computer. 

For orthogonal designs, sums of squares may be com- 
puted in much the same way as degrees of freedom. For 
factor F let 

SF = E 
levels f of factor F 

(sum of all observations at levelfof factor F)2 
(number of observations at level f of factor F) 

Thus 

SM = 
sum of all observations)2 
(number of observations) 

and 

SE = sum of squares of all observations. 

In a sums-of-squares Hasse diagram, SF is written as the 
superscript of factor F, SM is written as both the superscript 
and the subscript of factor M, and the subscripts of the 
other factors are found using (2). The subscripts are then 
the sums of squares. Such sums of squares calculations 
are illustrated in Figure Ic for the hypothetical example 
of Section 2. 

Finding expected mean squares and the appropriate test 
statistic is a little more complicated, as the expected mean 
squares depend on the particular parameterization of the 
mixed model used. Two parameterizations in common 
use are described in Schwarz (1993) as Formulation 1 and 
Formulation 2. For the mixed model in ( 1), Formulation 1 
assumes that 

1(a) ci are parameters 
1(b) ,3y are iid N(O, o2) 
1 (c) 6ijk are iid N(O, u2) 

1(d) (oz3)jj are iid N(O, 7A2B) 
1(e) fj, (cxf)ij, and 6ijk are independent for all i, j, 

and k. 

The assumptions for Formulation 2 are similar, except 
that interaction terms involving at least one fixed factor 
sum to zero over the fixed factor indices. For the model 
in (1) the assumptions for Formulation 2 are 

2(a) cei are parameters with E cei = 0 
2(b) Oj are iid N(O, B2) 

2(c) 6ijk are iid N(0, 42) 

2(d) (ao)ij are N(a, ' 1 
6dwith EA(B1 )-j = 0 for all j 

and cov ((cxf)ij, (ao),.j) = (- 6/a) for i 7 r 
2(e) (j, (cz3)1j, and 6ijk are pairwise independent. 

The choice of formulation depends on the covariance 
structure of the data. Here, procedures for finding ex- 
pected mean squares are presented for both formulations. 
The Hasse diagram allows the expected mean squares to 
be calculated without constructing additional tables and 
without keeping track of "live" and "dead" subscripts as 
in Taylor and Hilton (1981). 

For either formulation it is easiest to start at the bot- 
tom of the basic Hasse diagram and work upward. If 
F is a fixed factor, let Q(F) be a quadratic function in- 
volving the treatment-effect parameters for fixed factors 
containing F. For factor A in model (1), for example, 
Q(A) = ZacI (a,- _x.)2/(a - 1). The following two steps 
give the expected mean square for any factor F in an or- 
thogonal design, using Formulation 1. 

Step 1. If F is random, then write down 

total number of observations 2 
X 0F superscript on F 

If F is fixed, then write down 
total number of observations 

x Q(F). 
superscript on F 

Step 2. For every random factor R below F, include 
the term 

total number of observations 2 
X (R 

superscript on R 

The steps for Formulation 2 are similar, except that 2F 

replaces ou2 in Step 1, and Step 2 is replaced by Step 2': 

Step 2'. For every random factor R below F, include 
the term 

total number of observations 2 

superscript on R 

if every fixed factor found in R is also in F. 
This procedure is used in Figure 6a to find expected 

mean squares for the experiment of Figure 1 under the 
assumptions of Formulation 1. Since the error term is a 
random effect with nothing below it, the expected mean 
square is (12/12) x r2. The interaction AB is also ran- 
dom. Step 1 says to write down (12/6)uf2; Step 2 says to 
add uJ2 to that. For random factor B the expected mean 
square has term ( 12/3 )oJ from Step 1, and 2oAB +u(2 from 
Step 2. 

The expected mean squares calculations under Formu- 
lation 2, shown in Figure 6b, are the same except for 
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Al 2 A2 (B)3 

6Q(A) + 2crAB + 0,2 4oJ + 2B + 0 J2 

(AB)6 

2CAB + tJ2 

2 

(a) 
AB 

A2 (B)3 
6Q(A) + 2(AB + 42 4( + 42 

(AB)2 

2(AB + f2 

I 
(.E)12 

02 

(b) 

Figure 6. Expected Mean Squares for the Experiment in Figure 
1 Calculated Using the Assumptions in (a) Formulation 1 and (b) 
Formulation 2. 

ErMSB]. Since the interactionAB contains the fixed factor 
A not found in factor B, the term (AB does not appear in 
ErMSB]. 

Figure '7 shows the expected mean squares under the two 
sets of assumptions for a completely balanced experiment 
with fixed factors A and B and random factor C. Factors 
A, B, and C have a, b, and c levels, respectively, and there 
are n replications at each factor combination. 

The expected mean squares calculations lead directly 
to simple rules for which mean square to use in the de- 
nominator in the F statistic for testing the null hypothesis 
that the factor does not contribute to the variability of the 
data. 

Formullation> 1. The denominator is the mean square 
of the closest random factor below the effect to be tested, 
provided there is just one. 

For^mulation 2. The denominator is the mean square 
of the closest random factor below the factor to be tested 
that does not include a new fixed effect. If more than 
one factor qualifies as the closest, an approximation is 
needed. 

The expected mean squares need not be calculated ex- 
plicitly to be able to set up the F tests. The diagram in 
Figure lb can be used directly to set up the appropriate F 
statistics. The F statistics for testing the interactionAB and 
for the main effect of factor A are the same for both formu- 
lations: MSAB/MSE and MSA/MSAB, respectively. For 
testing the effect of B, Formulation 1 uses MSB/MSAB 
because AB is the nearest random factor below B; For- 
mulation 2 uses MSB/MSE for the F statistic because the 
closer random effect AB contains fixed effect A. 

(a) Formulation 1 
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Figure 7. Expected Mean Squares for Three-Factor Model. 

The diagrams also indicate when an exact F test cannot 
be found in a mixed multifactor model. In Figure 7a, for 
example, AC and BC are two different "closest" random 
factors below factor C, and no exact F test exists. The 
expected mean squares may, however, be used to construct 
a Satterthwaite approximate F test. 

[Received August 1993. Revised Janiuary 1995.1] 
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