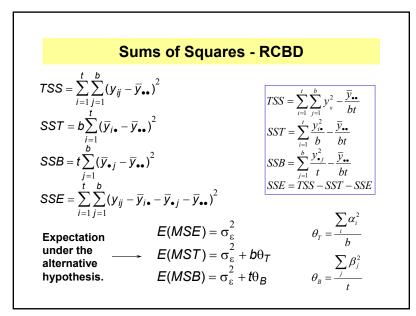


What's expected to be understood

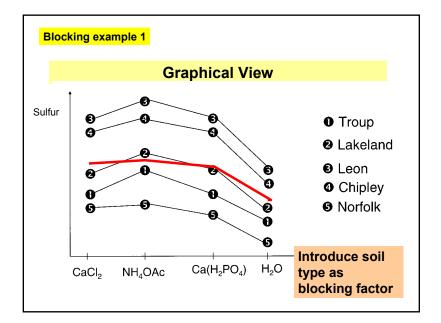
- Multiple regression in Response Surface Methodology. Dependent and independent variables are numeric. The predicted response is studied.
- N- way ANOVA including multiple comparison tests. Dependent variable is numeric, independent variables are categorical. Differences between treatment level means are investigated for N experimental factor, including possible interaction effects between factors. Model parameters are investigated.
- In all approaches Completely Randomised Designs are assumed.

What's next?

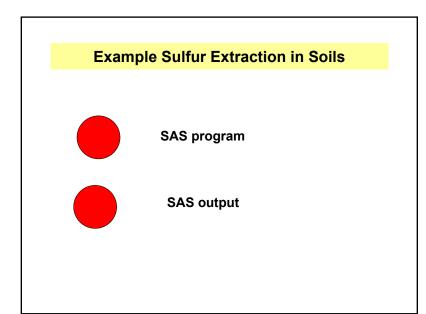
Generalisation to more complicated experimental designs: Randomised Block and Latin Squares Designs

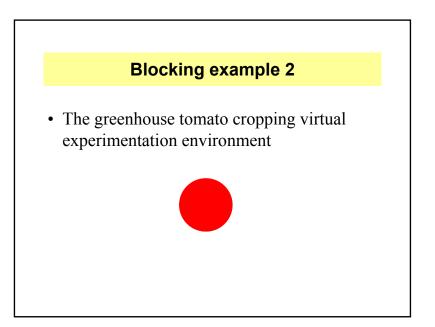


Single Replicate RCBD Design: Complete block layout with each treatment replicated once in each block. Data: Block 2 3 Treatment b 1 1 y_{1b} **y**₁₁ y₁₂ У₁₃ ... 2 **y**₂₁ y₂₂ y₂₃ y_{2b} t y_{t1} y_{t2} y_{t3} y_{tb} ...


1

	Linear A	nalys	is Mo	del		
$y_{ij} = \mu + \alpha$,	,		i = 1- j = 1-	··b	onstraints : ()
<i>E</i> (<i>y_{ij}) = μ</i>	$1 + \alpha_i + $	$\beta_j = \beta_j$	J _{ij}		$\sum_{i} \alpha_{i} = \sum_{i} \beta_{i} =$: 0
<i>E</i> (<i>y_{ij}) = μ</i>	$1 + \alpha_i + $	$\beta_j = \mu$	lij Block		$\sum_{i}^{i} \beta_{i} =$	= 0
$E(y_{ij}) = \mu$ Treatment	$ + \alpha_i + $	3 _j = 2	,		$\sum_{i}^{i} \beta_{i} =$ b	= 0 sum
,		,	Block 3		i	sum
Treatment	1 μ_11	2	Block 3 μ ₁₃	<u></u> 	i b	$\frac{sum}{\mu + \alpha_1}$
Treatment	1 μ_11	2 µ ₁₂	Block 3 μ ₁₃		ⁱ Δ μ _{1b}	$\frac{\text{sum}}{\mu + \alpha_1}$
Treatment 1 2	1 μ ₁₁ μ ₂₁	2	Block 3 μ ₁₃ μ ₂₃		ⁱ b μ _{1b} μ _{2b}	$\frac{\text{sum}}{\mu + \alpha_1}$


RCBD AOV						
Source	SSQ	df	MS	F		
Treatments	SST	t-1	MST=SST/(t-1)	MST/MSE		
Blocks	SSB	b-1	MSB=SSB/(b-1)	MSB/MSE		
Error	SSE	(b-1)(t-1)	MSE=SSE/(b-1)(t	-1)		
Totals	TSS	bt-1				
Partitioning of	TS	S = SST +	uares (TSS)			
	df _{Total}	= df _{Treatment}	+ df _{Block} + df _{Error}			



E	Blocking ex	cample 1
A scientist was inte	rested in the use	e of three chemicals and water
on their effectivene	ss in extracting s	sulfur from Florida soils. The
chemicals of intere	st are:	
 Calcium Ch 	loride	CaCl ₂
 Ammonium 	Acetate	NH₄OĀc
 Mono Calciu 	um Phosphate	Ca(H ₂ PO ₄) ₃
•Water		H ₂ O
Five soils were cho	sen for this expe	eriment:
 Troup 	•	Paleudults soil
•Lakeland	Walton Co.	Quartzipsamments soil
•Leon	Duval Co.	Haplaquads soil
	Jackson Co.	Quartzipsamments soil
 Chipley 		

Example Sulfur Extraction in Soils							
Soil	Solution	Sulfur					
Troop	CaCl	5.07					
Troop	NH4OAc	4.43					
Troop	Ca(H2PO4)2	7.09		CaCl	NH4OAc	Ca(H2PO4)2	Wat
Troop	Water	4.48	Troop	5.07	4.43	7.09	4.4
Lakeland	CaCl	3.31	Lakeland	3.31	2.74	2.32	2.3
Lakeland	NH4OAc	2.74	Leon	2.54	2.09	1.09	2.7
Lakeland	Ca(H2PO4)2	2.32	Chipley	2.34	2.07	4.38	3.8
Lakeland	Water	2.35	Norfolk	4.71	5.29	5.70	4.9
Leon	CaCl	2.54					
Leon	NH4OAc	2.09					
Leon	Ca(H2PO4)2	1.09					
Leon	Water	2.70					
Chipley	CaCl	2.34					
Chipley	NH4OAc	2.07					
Chipley	Ca(H2PO4)2	4.38					
Chipley	Water	3.85					
Norfolk	CaCl	4.71					
Norfolk	NH4OAc	5.29					
Norfolk	Ca(H2PO4)2	5.70					
Norfolk	Water	4.98					

