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Lecture 1 
Experimental optimisation

Eddie Schrevens

Experimental Optimisation

Definition of the region of interest or the factor space.  
Determination of the important factors and their ranges, 
taking into account the nature of the factor.

Development of predictive mathematical models, 
describing the relation between the independent variables 
and the dependent variables and/or  interrelations between 
variables  and/or group structures in the data.

Construction of an optimal design (or sampling strategy)
that spans the factor space in relation to the assumed 
models. 

Optimisation phase:  obtaining the optimal operating 
conditions  by investigation of the mathematical model. 

Experimental region, factor space, region of interest

The region of interest is the hyper-volume spanned by the 
points in the treatment matrix.  Thus a treatment matrix has 
a geometrical equivalent: fi for 3 experimental factors Xi
with 2 levels per factor (0, 1), resulting in 8 treatments.
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Experimental region, factor space, region of interest

Lets delete 4 treatments                  treatment matrix
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Geometrical representation

Tetrahedron

Defining the experimental region

• Experimental factors, fi X1, X2, X3, …

• Levels for each experimental factor, fi 0, 1

Range for each factor

• Treatments = combinations of certain levels for each factor

• Treatment matrix=vertical concatenation of treatments

Experimental region = convex hull of the treatment 
matrix

General(ised) (non)Linear Model
Relation between independ variable and exp factors

Predictive models
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Classification (clustering) model
Discovering group structures 
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Predictive models

Discrimination model
Modelling existing group structures
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Predictive models

Ordination model
Modelling interrelations between variables

 

 

First component

Se
co

nd
 c

om
po

ne
nt

-1.0 -0.6 -0.2 0.2 0.4 0.6 0.8 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Sepal L.

Sepal W.

Petal L.Petal W.

PCA Biplot on IRIS data

Predictive models

• It is assumed that a response y depends on a set of variables 
x1, x2, …, xk.  It is assumed that the x’s can be controlled by 
the experimenter with negligible error in comparison with the 
variance of y.  In general the x’s are called independent 
variables or experimental factors. The response y is called 
the dependent variable and is considered to be numeric.
The dependence of y on the x’s can be formalised as

y = ƒ(x1, x2, …, xk)

Predictive Models 
Modelling the relation between indep variable and exp factors
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General polynomial models

• When the mathematical form of the function ƒ is 
unknown, in most cases this function can be 
approximated satisfactorily, within the 
experimental region, by a polynomial function in 
the x’s.  It should be emphasised that the 
polynomial approximation can only be used 
within the experimental region in other words 
within the region spanned by the factor 
combinations of the x’s, because polynomials are 
notoriously untrustworthy when extrapolated. 

First order polynomial models

• A linear approximation function, also called a first order model
can be written as:

• This approximation is useful when the function ƒ is studied in a 
narrow range of the x1, x2, …, xk.  In other words the range of the 
x’s is so small that little curvature is to be expected in ƒ.  The 
fitting of such a polynomial can be considered as a particular case 
of multiple linear regression.  In order to estimate the regression 
coefficients βi in this model each independent variable xi should 
take at least 2 levels.  This model is able to estimate the main
effects.  To fit this model at least k+1 data points are necessary.

kk xxxy ββββ ++++= ...22110

First order polynomial models

Different graphical representations of the first order model: 

y= 50 + 8X1 + 3X2 

Perspective plot  and Contour plot

First order polynomial models

Different graphical representations of the first order model: 

y= 50 + 8X1 + 3X2 

Line plot y*X2=X1 and y*X1=X2
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First order polynomial models + 
interaction

• A slightly different model, consists of the linear model 
expanded with 2-factor interaction terms.  This is 
formalised as follows.  To fit this model 2 levels per factor  
and replications are necessary.  At least 1 + k + k(k-1)/2 data 
points are required.
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First order polynomial models + 
interaction

Different graphical representations of the first order model with 
interaction term:  

y= 50 + 8X1 + 3X2 – 4X1X2   

Perspective plot and Contour plot

First order polynomial models + 
interaction

Different graphical representations of the first order model with 
interaction term:  

y= 50 + 8X1 + 3X2 – 4X1X2   

Line plot y*X2=X1 and  y*X1=X2

Second order polynomial models

• If the fitting of ƒ involves more curvature a quadratic or 
second order model  becomes necessary.

• This full quadratic estimation contains linear-, squared- and 
cross-product terms.  To estimate the regression 
parameters βi, βii and βij each variable xi should take at least 
3 levels. This model requires at least 1 + 2k + k(k-1)/2 data 
points.
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Second order polynomial models

Perspective and contour plot of the second order model:  

y = 50 + 8X1 + 3X2 – 7X1
2 – 4X1X2

Second order polynomial models

Perspective and contour plot of the second order model:  

y = 50 + 8X1 + 3X2 – 7X1
2 – X2

2 – 4X1X2

General remark on the use of predictive models

• Parameter estimation
• Physical, biological, genetical, … meaning?

– Balanced ANOVA models

• Predicted response estimation
• Response surface methodologies in 

optimisation

y = ƒ(x1, x2, …, xk)

The method of least squares
The polynomial models can be formulated in matrix notation:

Y=Xβ + ε
Where Y is an nx1 vector of observations on the dependent 
variable, X equals an nxp matrix of known factor levels for each 
individual component, including cross-product and quadratic 
terms, β is a px1 vector of unknown parameters, n is the number 
of experimental units and ε is an nx1 vector of random errors. 

In the case were the (X’X) matrix is not singular, the least squares 
estimation of the parameters b of β is given by:

b = (X’X)-1X’y
The variance-covariance matrix of b is expressed in the following 

equation:
var(b) = σ2 (X’X)-1

with σ2 the error variance.  The elements of the matrix (X’X)-1 are 
proportional to the variance and the covariances of the elements 
of b.  

The variance of the prediction in a specific point x is given by:
var(xb) = σ2 x’(X’X)-1x
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The method of least squares

Y=Xβ + ε

• Parameter estimation

b = (X’X)-1X’y

variance-covariance matrix of b 
var(b) = σ2 (X’X)-1

• Predicted response estimation

Y=Xb for a specific x

variance of the prediction in a specific point x 
var(xb) = σ2 x’(X’X)-1x

(X’X)-1 = I

Design

• The next and most important question arises:  ‘What data are 
needed to fit these polynomial models with maximum precision?’
Or, ‘What factor level combinations should be used as 
treatments?’ This pertains to the definition of the experimental 
region and the selection of an optimal experimental design in 
function of the assumed model.  

1 + 2k + k(k-1)/2Second order

1 + k + k(k-1)/2First order  + interaction

k+ 1First order 

Minimal  number  of data 
points

Model in k exp factors

Definitions in experimental design (1)

• An experimental factor or independent variable is a fixed 
variable, which is supposed to determine at least partially the 
system under study (and thus affects the dependent variable(s)) 
and which can take at least two different values or factor levels.  
A factor is denoted xi for i=1, 2, …, k and k the number of 
experimental factors in the study.

• An experimental treatment is a specific combination of a level 
for each factor.  A treatment corresponds with a row vector 
consisting of a level for each factor ordered in an arbitrary way.  
Vertical concatenation of all these row vectors gives the 
treatment matrix.

• The number of observations of the independent variable for 
each treatment are called replications.

Definitions in experimental design (2)
• An experimental unit is the smallest subdivision of an 

experiment to which a treatment is applied in a single trial.  An 
experimental unit corresponds to a row vector representing a 
treatment.  

• The design matrix of an experiment consisting of n experimental 
units and k factors is a nxk matrix, which rows are the 
experimental units.  

• The region of interest, the factor space of the experiment or the 
experimental region is the hyper-volume spanned by the points 
in the treatment matrix.  Thus a treatment matrix has a 
geometrical equivalent.  In classical experimental design theory
both hyper-cubical and hyper-spherical experimental regions are 
most common.

• The size of an experiment equals the number of treatments 
multiplied by the number of replications per treatment or the 
number of experimental units n.
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Basic principles of experimental design

Replications
Measurements of the dependent variables for repetitions of the 
same treatment 

Randomisation
Protection against unknown bias introducing factors

Blocking
Protection against known bias introducing factors

Basic principles of experimental design
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Replications: measurements of the dependent variables for 
repetitions of the same treatment 

Experimental unit

Basic principles of experimental design

Replication or measurement of the dependent variables for 
repetitions of the same treatment has two goals:

– Firstly it allows to obtain an estimate of the experimental error.  
This estimate of error becomes a basic unit of measurement to 
determine whether observed differences in the dependent 
variable are really statistically different.  Thus the size of a
detectable effect (precision) is determined by the number of 
replications.

– Secondly replication permits to obtain more precise estimates 
of possible differences between treatments.  

Replication Estimating experimental error

…

123-1012Ti

…

Reps: measurements of fruit yield per tree X3X2X1Treatment

Basic principles of experimental design
Replication

Fruit yield / tree has inherent biological variability

Random variable 

Follows a normal probability distribution

N replicates
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Estimation of the Population Mean, µ (Τι).
Point Estimate of µ is the sample mean: y

Interval Estimate of µ is the confidence interval:

The Central Limit Theorems
tell us the shape of the sampling 

distribution
),( yN σµ

x

y

-4 -3 -2 -1 0 1 2 3 4

µ -1.96 µ +1.96 

95% of sample means 
expected to lie
in this interval.

2.5% of sample
means expected to
lie in this interval.

2.5% of sample
means expected to
lie in this interval.

µ yσyσ

Ny
σσ = ∆

σ1 < σ

Decreasing σ decreases 
the spread in the 
sampling dist of     

Same thing happens if 
you increase n.

Same thing happens if ∆
is increased.

y

N(µ0,σ/√n)

N(µ0,σ1 /√n)

Increasing precision in comparing two treatments

N(µ1,σ1 /√n)

N(µ1,σ/√n)

Basic principles of experimental design

To gain some intuitive insight in the effect of replication, 
the relation between the number of replicates on the 
standard error of the mean of a treatment is demonstrated.  
Recall that the standard error of the mean is given by the 
standard deviation divided by the square root of the 
number of replicates or the sample size. 

Suppose that 45 measurements of activity of the poly 
phenol oxidase (PPO) enzyme of 45 plant extract of the 
same treatment were carried out.  The enzymatic activity is 
expressed in change of spectrofotometric absorption per 
minute.  

Replication
Basic principles of experimental design

450.102.55PPO

Number of 
replications

Standard error 
of the mean

Mean

Replication

The main question arises:  ‘How many replicates does the 
experimenter need to achieve a ‘satisfactory’ estimate of the mean 
enzymatic activity for that particular treatment?’ To simulate the 
effect of replication from the population of 45 measurements 10 
samples are taken respectively of 2, 3, 4, …, 44 measurements.  
For each sample the standard error of the mean is calculated.  For 
a series of samples with the same sample size the average of the
standard errors is computed and plotted against the sample size.
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Basic principles of experimental design

Replication

Basic principles of experimental design
Replication

The standard error of the mean shows a sharp decrease when the 
number of replicates is increasing, but the decrease tends to stabilize 
around the true population value at large numbers of replications.  

Recall that, under normality assumptions, the 95% confidence interval 
around the true population average µ is approximately:

It is obvious that if the number of replicates increases the accuracy of 
the sample estimate  of µ increases tremendously until an asymptotic 
value is reached. 

stderrXstderrX 22 +≤≤− µ

For 10 replicationsFor 45 replications

2.055.22.05.2 +≤≤− µ 42.055.242.05.2 +≤≤− µ

Basic principles of experimental design

Randomisation
Protection against unknown bias introducing factors

By randomisation is meant that both the allocation of the treatments to 
the experimental units as well as the order in which measurements are 
taken should be determined at random.  The different treatments should 
be randomised over the experimental units when carrying out the 
experiment.  This means that each treatment should have the same
probability of being exposed to bias generating factors not included in 
the experiment.  Thus randomisation of the treatments excludes the 
introduction of systematic bias into an experiment, by averaging out the 
possible effects of extraneous factors.  

In the experimental practice many bias introducing factors are possible; 
for example differences in light flux density in growing rooms, etc

The use of randomisation is the keystone of the application of statistical 
theory to the design of experiments.

Basic principles of experimental design

Randomisation
Protection against unknown bias introducing factors

In the experimental practice many bias introducing factors are possible fi

Locational factors 

Subjective selection

Measurement order in lab

Systematic bias
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Locational factors

Trays: Wild type GMO

Field

Gradient

Confounding of two 
experimental factors

Plant aspect
Soil moisture

Due to non-randomisation

Example 1

Locational factors: randomised

Trays: Wild type GMO

Field

Gradient

Random allocation of 
experimental units in the 
field

Each plant has the same 
probability of being 
exposed to bias 
generating factors like 
soil moisture

Treatment mean not 
affected by moisture 
content

Within treatment variance 
is increasing

Example 1

Subjective selection

Male employees on payroll

Empl 1-10
Sample #1

Empl 11-20
Sample #2

Empl 21-30
Sample #3

Health Diet Veg. Diet M & P Diet

Cholesterol 
Levels

1n1

12

11

y

y
y

M

2n2

22

21

y

y
y

M

3n3

32

31

y

y
y

M
What if payroll is ordered from top- to low salaries?

Confounding of salary and diet

Example 2

Subjective selection: switch order

Male employees on payroll

Empl 21-30
Sample #1

Empl 11-20
Sample #2

Empl 1-10
Sample #3

Health Diet Veg. Diet M & P Diet

Cholesterol 
Levels

1n1

12

11

y

y
y

M

2n2

22

21

y

y
y

M

3n3

32

31

y

y
y

M

Confounding of salary and diet

Example 2
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Randomised experimental study

Male employees on payroll

Random
Sample #1

Random
Sample #2

Random
Sample #3

Health Diet Veg. Diet M & P Diet

Cholesterol 
Levels

1n1

12

11

y

y
y

M

2n2

22

21

y

y
y

M

3n3

32

31

y

y
y

M

Example 2

Order of measurement: non- randomised

Trays: Wild type GMO

Measurement equipment becomes unstable after some time

Confounding of two 
experimental factors

Plant aspect
Equipment failure

Invalid experiment

Due to non-
randomisation

Example 3

Order of measurement: randomised

Trays: Wild type GMO

Treatment means not 
affected by 
equipment failure

Treatment means can 
be compared without 
confounding

Valid experiment

Variability on the 
means is affected by 
equipment failure

Randomisation step

Example 3

Example from industry

Sampling bottles on a conveyor belt

Virtual experimentation environment
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Basic principles of experimental design

Randomisation
Protection against unknown bias introducing factors

The use of randomisation is the keystone for the application of 
statistical theory to the design of experiments

Non-randomisation leads to invalid experiments due to confounding 
between the experimental factors under study and some unknown bias 
generating factors, resulting in invalid results and interpretation

Randomisation of the experimental units in an experimental design 
leads to a completely randomised designs.

Basic principles of experimental design

Randomisation
Protection against unknown bias introducing factors

Completely Randomized Design (one-factor design)

• Experimental units are relatively homogeneous.

• Experiment will use very few replicates.

• Treatments are assigned to experimental units at random.

• Each treatment replicated the same number of times.

• No accommodation made for disturbing variables (other 
sources of variation).

Basic principles of experimental design

Blocking
Protection against known bias introducing factors

When reasons exist to believe that a certain factor, initially not included 
in the experiment could influence the response, this factor should be 
introduced as a blocking factor. 

The blocking factor should be designed as independent (orthogonal) as 
possible with the other experimental factors.  If this factor is not 
interacting with other factors, the blocking factor has a pure additive 
effect and is not interfering with the interpretation of the main factors. 

The blocking factor measures the effect of the known bias introducing 
process, even in situations where this factor is not  specifically defined.

Practical Situations
In many situations, the researcher:
• Does not have sufficient homogeneous experimental material 

or conditions in one group (location, batch, etc) to effectively
use the completely randomized design (i.e. resource 
constraints)

• The study objectives require examining treatments over a 
broad range of experimental units in order that results can be 
extended to more situations (i.e. breadth of study objectives).

• The experimental material must be grouped for administrative 
or implementation purposes (i.e. implementation constraints).

If the researcher knows something about the characteristics of the 
experimental material or conditions,  it is often possible to group
experimental units into sets of relatively homogeneous material and 
then compare treatment level means within these groups (=blocks).

Blocking
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A scientist was interested in the use of three chemicals and water 
on their effectiveness in extracting sulfur from Florida soils. The 
chemicals  of interest are:

•Calcium Chloride CaCl2
•Ammonium Acetate NH4OAc
•Mono Calcium Phosphate Ca(H2PO4)3
•Water H2O

Five soils were chosen for this experiment:
•Troup Jackson Co. Paleudults soil
•Lakeland Walton Co. Quartzipsamments soil
•Leon Duval Co. Haplaquads soil
•Chipley Jackson Co. Quartzipsamments soil
•Norfolk Alachua Co.  Paleudults soil

Blocking example 1
Blocking for control of extraneous variation

The main interest in the experiment is the comparison of the 
four extraction methods. Which one is the best?

The variation imposed on the extraction procedure by the five 
different soil types represents a source of extraneous variation.  
Unless controlled for in the experiment, this variation has the 
potential to “swamp” or overwhelm the differences among the 
extraction procedure, resulting in the high probability of concluding 
there are no treatment effects when in fact there actually are 
treatment effects present.

Fair comparisons only occur among extractions within a soil type.  

We wish to use the combined experience across soil types to 
make a stronger statement about the extraction procedures.

Blocking example 1

Graphical View

Blocking example 1

Sulfur

Introduce soil 
type as 
blocking factor

Randomized Block Design
Any experimental design in which the randomization of treatments is 
restricted to groups of experimental units within a predefined block of 
units assumed to be internally homogeneous is called a randomized 
block design.   Blocks of units are created to control known sources of 
variation in expected (mean) response among experimental units.

Rules for blocking:
• Carefully examine the situation at hand and identify those 

factors which are know to affect the proposed response.
• Choose one or two of these factors as the basis for creating 

blocks.

Blocking factors are sometimes referred to as disturbing factors.

Blocking factors are additional experimental factors.
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Other examples of blocking factors

Disturbing Variable Experimental Unit
Nutrient gradient
Water moisture gradient Field Plot
Slope differences
Soil composition
Orientation to sun
Flow of air Location in Greenhouse
Distribution of heat
Age Tree
Local density
Gender
Age Person
Socio-demographics

Blocking importance

How blocks are formed is critical to the effectiveness of the 
analysis.

Introducing blocks should  maximizes within block 
homogeneity while simultaneously maximizing among 
block heterogeneity.

Completely randomised design
Trays: Wild type GMO

Field

Gradient

Each plant has the same 
probability of being 
exposed to bias 
generating factors like 
soil moisture

Treatment mean not 
affected by moisture 
content

Variance within treatment 
is increasing

Blocking example 2

Randomised block design
Trays: Wild type GMO

Field

Gradient

Blocks perpendicular to 
moisture gradient

Treatment means not 
affected by moisture 
content, because 
calculated within block

Variance within treatment 
per block has decreased

Block factor can give 
insight in the effect of the 
moisture gradient

Blocking example 2

Blocks

River
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Order of measurement: completely randomised
Trays: Wild type GMO

Treatment means not 
affected by 
equipment failure

Treatment means can 
be compared without 
confounding

Valid experiment

Variability on the 
means is affected by 
disturbing factors

Randomisation step

Blocking example 3

Order of measurement: completely randomised

Suppose
• Amount of measurements is to large to finish on one day
• Operators are switched at regular times
• Part of the measures are taken on different equipment or in 

different labs
• Part of the basic material was subjected to different pre-

processing conditions
• Temperature rise in the lab during a midsummer day

Blocking example 3

Order of measurement: completely randomised
Trays: Wild type GMO

Introducing a 
blocking factor 
takes care of the 
disturbing process

Makes 
experimentation 
more precise, due 
to smaller error 
variance

Blocking example 3

Blocks

Advantages and Disadvantages of blocking

Advantage of a Blocked Design
• To control a single extraneous source of variation and remove 

its effect from the estimate of experimental error (reducing 
variance).

• Allows more flexibility in experimental layout.
• Allows more flexibility in experimental implementation and 

administration.

Disadvantage of a Blocked Design
• Generally unsuited when there is a large number of treatments 

because of possible loss of within block homogeneity.
• Serious problem with the analysis if a block factor by treatment 

interaction effect actually exists and no replication within blocks 
has been included. (solution: use replication within blocks when
possible).
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Complete or incomplete blocked designs

Can all treatments be accommodated in each block?

Complete Block Design: Every treatment occurs in each block.
Incomplete Block Design: Every treatment does not occur in each block.

A B C D

D C A B

B D C A

Complete

A B C

D C A

B D A

Incomplete

Randomization in Blocked Designs

For all ‘one’ blocking classification designs:
• Randomization of treatments to experimental units takes place 

within each block.
• A separate randomization is required for each block.
• The design is said to have “one restriction on randomization’.

A completely randomized design requires only one randomization.

Two disturbing factors lead to  two restrictions on randomisation

Latin square design

Randomization in practice

All major statistical packages provide tools to generate 
random numbers and/or generate randomisation and 
blocking schemes for a great many standard 
experimental designs 

SAS, S-Plus, design-expert, …

S-plus, randomise a design matrix : mydesign <- fac.design(rep(3,2))
randomize (mydesign)

S-plus, generate n random numbers:   round(runif(n, min=0, max=100))

Properties of experimental designs

Effects of time and 
concentration are completely 
confounded
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Extreme Multicollinearity

x
x

x
x

x
x

x

Conc

Time

Yield

Properties of experimental designs

Orthogonal design

Properties of experimental designs

2312254

240253

1612102

170101

YieldConcTimeTreatment

2367.54

24-67.53

166-7.52

17-6-7.51

YieldConcTimeTreatment

Calculation of var-cov matrix 
of the treatment matrix T

1. Center the var Time and Conc: 
extract column means

2. Calculate T’T/n-1, with n 
number of observations

617.5means

T’T/n-1 = 
480

075

Centering

Orthogonal design

Properties of experimental designs

23114

24-113

161-12

17-1-11

YieldConcTimeTreatment

Standard coding as an orthogonal treatment matrix

Treatment vectors are centred and rescaled to constant variance

T’T/n-1 = 
1.330

01.33
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#calculation of VCV of centred X
> X<-matrix(c(-7.5,-6,-7.5,6,7.5,-6,7.5,6), nrow=4, ncol=2, byrow=T)
> X

[,1] [,2] 
[1,] -7.5   -6
[2,] -7.5    6
[3,]  7.5   -6
[4,]  7.5    6
> VCVmatrix<- t(X)%*%X/(nrow(X)-1)
> VCVmatrix

[,1] [,2] 
[1,]   75    0
[2,]    0   48
> 
> var(X)

[,1] [,2] 
[1,]   75    0
[2,]    0   48

Calculations of the variance-covariance matrix in S-plus
S-plus calculations of the variance-covariance matrix on 
the standard coded design matrix 

#calculation of VCV of standard coded X

> Xs<-matrix(c(1,1,1,-1,-1,1,-1,-1), nrow=4, ncol=2, byrow=T)

> Xs

[,1] [,2] 

[1,]    1    1

[2,]    1   -1

[3,]   -1    1

[4,]   -1   -1

> VCVsmatrix<- t(Xs)%*%Xs/(nrow(Xs)-1)

> VCVsmatrix

[,1]     [,2] 

[1,] 1.333333 0.000000

[2,] 0.000000 1.333333

> var(Xs)

[,1]     [,2] 

[1,] 1.333333 0.000000

[2,] 0.000000 1.333333

Properties of experimental designs

kk xxxy ββββ ++++= ...22110

Orthogonality

Reconsider the first order polynomial

Y=Xβ + ε
In matrix notation

The variance-covariance matrix of b (estimate of β) is 
expressed in the following equation:

var(b) = σ2 (X’X)-1

with σ2 the error variance.

Properties of experimental designs

Orthogonality
A design for a first order model is orthogonal when its design matrix 
D is an orthogonal matrix. The product of an orthogonal design 
matrix with his transpose is a diagonal  matrix, thus D’D.  Recall that 
the variance-covariance matrix of the model parameters in a least 
squares fit of a linear model is:

var(b) = σ2 (D’D)-1

with σ2 the error variance.

Thus the covariances of the model parameters are zero, in other 
words the parameter estimates can be assessed independently.  
Thus no confounding between experimental factors arises and 
effects can be interpreted directly.  
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Recipes for orthogonality

Factorial type 
designs

Balance

Balancing refers to the specific assignment of treatments to 
experimental units such that comparisons of treatment effects 
are done with equal precision.  This is usually accomplished by 
equally replicating each treatment.

Balanced Block Design: The variance of the difference between 
two treatment means is the same regardless of which two 
treatments are compared.  This usually implies that the overall 
replication (disregarding which blocks they are in) for the 
comparison of two treatments is the same for all pairs of 
treatments.

Partially Balanced Design: The variance of the difference between 
two treatments depends on which two treatments are being 
considered.  This usually implies different replication for different 
treatments.

Unbalanced Designs: Usually what you end up with - not a design.

Choosing an optimisation strategy

‘One-factor-at-a-time’ approach

100

10

Choosing an optimisation strategy

Multi-factor approach
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Choosing an optimisation strategy

• The sum of all the experimental units of all the one-factor 
experiments is most of the time much larger than the 
number factorial combinations.  Taking into account that 
the one-factor-at-a-time does not guarantee to find the 
optimum, while the factorial does, it is obvious that factorial 
type experiments are by far more efficient in optimisation 
strategies. 

• Secondly the efficiency of finding significant effects 
increases with the number of factor combinations included 
in the experiment.

• With factorial type designs investigation of interactions is 
possible

Choosing an optimisation strategy

Vitamins
Treatment N P T

1 -1 -1 -1
2 +1 -1 -1
3 -1 +1 -1
4 -1 -1 +1

The effect of N can be assessed as the difference between the 
response at low level and the response at high level, thus treatment 2 
minus treatment 1, both P and T being constant.  Obviously in this 
approach the conclusions about the effect of N can only be drawn at 
the low levels of P and T.  In the same way the effect of P is estimated 
as responses of treatment 3 minus treatment 1 and the effect of T as 4 
minus 1.  

If the observations on each treatment (replicates) are independent with 
equal variance σ2, the variances of these quantities are 2σ2.  

Essentially this experiment consists of 3 sub-experiments with 2 
treatments each, as a consequence three one-way-ANOVA models are 
necessary for the analysis. 

Example:  One-factor-at-a-time’ experiment

Choosing an optimisation strategy
Example:  Multi-factor or factorial experiment

Vitamins

Treatment N P T

1 +1 +1 +1

2 +1 +1 -1

3 +1 -1 +1

4 +1 -1 -1

5 -1 +1 +1

6 -1 +1 -1

7 -1 -1 +1

8 -1 -1 -1

In this factorial experiment the effect of a vitamin is estimated as the difference 
between the sum of all high levels and the sum of all low levels divided by 4, thus 
for example for N:

Effect of N = [(Treatment 1 + 2 + 3 + 4) – (Treatment 5 + 6 + 7 + 8)] / 4

Here the conclusions about the effect of N are based on all level combinations of 
the factor P and T.  Moreover all possible interaction effects between 2 and 3 
vitamins can be evaluated through one three-way-ANOVA-model.

The variance of this quantity equals σ2/2, thus 4 times smaller than in the ‘one-
factor-at-a-time’ approach.  This again demonstrates the superiority of the factorial 
experiment.

Factorial Experiment

Factorial Experiment - an experiment in which the response y is 
observed at all factor level combinations.

An experiment is not a design. (e.g. one can perform a factorial 
experiment in a completely randomized design or in a 
randomized complete block design, or in a Latin square 
design.)

Design relates to how the experimental units are arranged, 
grouped, selected and how treatments are allocated to units.

Experiment relates to how the treatments are formed.  In a 
factorial experiment, treatments are formed as combinations of 
factor levels.
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Factorial Experiment

Number of treatments

a*b*c*d …

with 

a number of levels of factor A

b number of levels of factor B

c number of levels of factor C

d number of levels of factor D

Size of the experiment

R*(a*b*c*d)

with 

R number of replications

Statistical models for the ‘factorial type’ approach

As demonstrated previously experimenting with all important 
factors simultaneously included in a ‘factorial’ type 
experiment is a far better approach.

Once this multi-factor experimental region is defined, a model 
form has to be chosen, that will be used to relate the 
experimental factors with the measured plant response within 
the experimental region.  

In an ANOVA approach a sums of squares partitioning 
approach is preferred.  The accent lays on parameter 
estimation.  Dependent variable is numeric, independent 
variables are categorical or fixed numeric.  (next chapter) 

In a ‘Response Surface’ approach the preferred models 
are polynomials of first and second degree, namely, 
linear and quadratic models.  The emphasis lays on 
predicted response estimation. Dependent and 
independent variables are numeric.

Determination of the important factors and their ranges

I. Sub-optimal operating conditions are known. Starting 
from the actual operating conditions for a certain process, an 
optimal ‘factorial type’ design is constructed to explore the 
neighbourhood of this ‘sub-optimum.  In this case the experimental 
region is defined as a design centred at the ‘sub-optimum’.  Thus 
for each factor a range is chosen with as centre the sub-optimum.  
Some particular combinations of the levels of each experimental 
factor describe the vertices of a hyper-volume, centred at the sub-
optimum.  The choice of the actual range per factor depends on a
priori knowledge about the effect of the factor on the response 
variable, on the nature of the factors and on the assumed model.

A first order design and model leads to consecutive small 
experiments: ‘method of steepest ascent’.

A second order design and model needs a small number of large 
experiments. 

Determination of the important factors and their ranges

II. No or not enough a priori knowledge about 
the process. When a priori knowledge about the importance of 
experimental factors or about the approximate location of the 
optimum is missing, an overall optimisation in multiple steps is
necessary.  

In the first steps screening experiments are used to separate 
important components from less important ones over a relatively 
large experimental region, thus involving relatively large ranges 
for each factor.  Mostly first order models.

Once the key factors are determined, the approach sub I can be 
followed to determine the region of interest.
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Statistical models for the ‘factorial type’ approach

First order models with or without interaction terms, are appropriate in 
three situations:

1. Screening experiments to select the important factors out of set of 
possible factors of influence. 

2. Experiments in so narrow ranges that the expected effect on the 
response variable can be assumed to be linear.  This approach is
especially suitable in the ‘Method of Steepest Ascent’.

3. When the real model is known to be first order linear.

A first order model fits a hyper-plane over the experimental region, as 
a consequence the maximal response will always occur on the border 
of the region if the plane has slope.  This model only provides 
information about the main effects of the factors.  

If the fitted surface has no slope the experimental factors have no 
main effects within the experimental region; in other words a zone of 
equal response is found. 

Designs for first order models

• These models need at least experiments with 2 levels per 
factor and  k+1 treatments.

• For screening experiments with large amounts of 
components the Plackett-Burman- and fractional factorial 
designs are most appropriate.

Designs for first order models

A Plackett-Burman design is an orthogonal screening 
design, consisting of a fraction of a 2k full factorial with 
as main property a tremendous reduction of the amount 
of treatments.  As a consequence no interactions 
between factors are estimable, but still all main effects 
can be interpreted trough a first order model.  

These designs allow screening from 6 to 23 factors 
simultaneously.

Plackett-Burman designs

Designs for first order models
12 treatments Plackett-

Burman designs

Experimental factors

Treat
ment

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

1 + + - + + + - - - + -

2 + - + + + - - - + - +

3 - + + + - - - + - + +

4 + + + - - - + - + + -

5 + + - - - + - + + - +

6 + - - - + - + + - + +

7 - - - + - + + - + + +

8 - - + - + + - + + + -

9 - + - + + - + + + - -

10 + - + + - + + + - - -

11 - + + - + + + - - - +

12 - - - - - - - - - - -

- low level (-1)

+  high level (+1)
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Designs for first order models
Plackett-Burman screening designs

• To apply these designs, the experimenter assigns a column to each 
chosen experimental factor under study (columns in the table) and then 
allocates treatments randomly according to the chosen columns.  

• As a rule of thumb the number of treatments should be at least 5 more 
than the number of experimental factors to allow the estimation of 
experimental error and valid test statistics about the model.  

• The data are analysed with a first order regression model.

28 treatments13 – 23

20 treatments7 – 15

12 treatments (frac fact is better)4 <  7

Possible designNumber of exp factors

Designs for first order models
Fractional factorial designs

• Also these designs are fractions of 2k full factorial designs, but only a 
limited amount of fractions is allowed because these designs 
emphasise ‘balance’ in estimating factor effects.  In other words the 
estimation of each specific main effect should consist of geometrically 
balanced differences of measured responses on high and low factor 
levels. 

• Of course the reduction in the number of treatments results in the 
impossibility of estimating high order interactions, depending on the 
fraction chosen .

½ fraction

of a

23 factorial design

23 factorial design

Treatment X1 X2 X3 X4 X5 X6 X7 X8

1 -1 -1 -1 +1 +1 +1 -1 +1

2 +1 -1 -1 -1 -1 +1 +1 +1

3 -1 +1 -1 -1 +1 -1 +1 +1

4 +1 +1 -1 +1 -1 -1 -1 +1

5 -1 -1 +1 +1 -1 -1 +1 +1

6 +1 -1 +1 -1 +1 -1 -1 +1

7 -1 +1 +1 -1 -1 +1 -1 +1

8 +1 +1 +1 +1 +1 +1 +1 +1

9 +1 +1 +1 -1 -1 -1 +1 -1

10 -1 +1 +1 +1 +1 -1 -1 -1

11 +1 -1 +1 +1 -1 +1 -1 -1

12 -1 -1 +1 -1 +1 +1 +1 -1

13 +1 +1 -1 -1 +1 +1 -1 -1

14 -1 +1 -1 +1 +1 +1 +1 -1

15 +1 -1 -1 +1 +1 -1 +1 -1

16 -1 -1 -1 -1 -1 -1 -1 -1

16 treatments fractional factorial screening designs to fit a first order model 
in 6, 7 and 8 factors Designs for first order models

• To apply the design on the previous slide, select the first 6, 7 or 8 
columns. No free choice of columns due to balance.

• Design tables are available in literature and software.

Fractional factorial designs

Number of factors Possible design

<4 Full factorial

4 ½ fraction of 24:  8 treatments 

5 1/4 fraction of 25:  8 treatments  

6 1/4 fraction of 26:  16 treatments  

7 1/8 fraction of 27:  16 treatments  

8 1/16 fraction of 28: 16 
treatments  
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First order screening designs 
Adding centre points

• The centre of a coded design corresponds with the 
treatment coding (0, 0, …, 0).  

• Addition of replicated centre points provides the possibility 
to test lack of fit, in other words to test if the real response
surface is first order. 

• This lack of fit is calculated as the difference between the 
mean responses of all design points (equally replicated) 
and the mean response in the centre point.  

• Of course to test the curvature for each individual factor a 
design for a second order model is necessary.

Designs for first order models with 
interaction terms

• These models need at least experiments with 2 levels per factor 
and  1 + k + k(k-1)/2  treatments.

• For the estimation of first order models with interaction reflected  
Plackett-Burman- and fractional factorial designs are most 
appropriate.

Designs for first order models with 
interaction terms

Reflected Plackett-Burman designs

• A reflected Plackett-Burman design arises from a specific Plackett-
Burman design augmented with the same design but all ‘+’ changed to’-‘
and vice versa.  

• Thus the 12 run design is augmented to a 24 treatment design, the 20 
run to 40 runs and the 28 to 56 treatments.

• The addition of these treatments makes the independent estimation of 
main effects and 2-factor interactions possible. 

Number of factors Possible design

<7 24 treatments, fractional 
factorial is better

7-15 40 treatment 

13-23 56 treatment

Designs for first order models with 
interaction terms

Fractional factorial designs

• When a larger fraction of a 2k full factorial is taken, not only main effects 
but also two-factor interactions can be estimated 

• Additional fractional factorial design plans can be found in literature and 
software

Number of factors Possible design
<5 Full factorial
5 1/2 fraction of 25:  16 

treatments  
6 1/2 fraction of 26:  32 

treatments  
7 1/2 fraction of 27:  64 

treatments  
8 1/4 fraction of 28: 64 

treatments  
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Statistical models for the ‘factorial type’ approach

Second order models provide information about linear, 
interaction and curvature effects with respect to all or most of the 
independent numeric variables.

These models are widely applicable to describe experimental data
in which system curvature is abundantly present.  Thus these 
models are most appropriate to optimise a response over the 
experimental region.

Designs for these models need at least experiments with 3 levels
per factor and 1 + 2k + k(k-1)/2 treatments.

An obvious choice for such a design would be a 3k factorial, 
namely a factorial experiment with each of k factors at three 
levels in all possible combinations.  

Designs for second order order models 

• For small numbers of factors (2 or 3, resulting in respectively 9 
and 27 treatments) this approach is still feasible.  

• For 4 factors, 81 treatments are involved to fit only fifteen model 
parameters (one intercept, four first order coefficients, four full 
quadratic and six cross-products) in a full quadratic second 
order model.  

• Starting with 5 factors the number of treatments becomes 
prohibitively large (35 = 243).  

Designs for second order models 

Several authors have suggested specific second order designs that 
compromise between relative precision in estimating the model 
parameters and the amount of experimental effort, that is the 
number of treatments necessary.  

The Box-Behnken and Central Composite designs are mostly used.  
Typically, these designs are appropriate for second order models in 
two to eight factors.  

If more than eight factors are involved also these designs become 
unpractically large. In this case a preliminary screening experiment   
(first order model) is considered to select (reduce) the number of 
experimental factors.

Designs for second order order models 

• Box-Behnken designs are subsets of 3k factorial designs.

• Except for the centre points, all points are centroids of the 
edges (or faces) of a hypercube with dimensions equal to the 
number of factors.  Thus all these treatments lay on a single 
hyper-sphere and thus are equally distant from the centre. 
These designs have a hyper-spherical geometry. 

• This geometrical property is associated with rotatability, or the 
variance of the predicted response depends only on the 
distance to the centre of the design and not on the direction.  

• Box-Behnken designs exist for 3 to 7 experimental factors

Box-Behnken designs
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Designs for second order order models 
3-factor Box-Behnken designs

12 centroids on the perimeter

Centre point 3 times replicated

15 treatments

Treatment x1 x2 x3

1 +1 +1 0
2 +1 -1 0
3 -1 +1 0
4 -1 -1 0
5 +1 0 +1
6 +1 0 -1
7 -1 0 +1
8 -1 0 -1
9 0 +1 +1
10 0 +1 -1
11 0 -1 +1
12 0 -1 -1
13 0 0 0
14 0 0 0
15 0 0 0

3-factor Box-Behnken designs

Designs for second order order models 

Box-Behnken designs are practical for 3 to 7 experimental factors

Box-Behnken designs

626567

546486

466405

273244

153123

Total number of 
treatments

Replication of 
the centre point

Number of 
centroids

Number of factors

Designs for second order order models 

• The Central Composite designs are by far the mostly used 
designs for second order models.  

• These designs consist of a 2k full factorial or a fractional 
factorial, augmented with 2k star points and nc centre points.  

• If a fractional factorial is used, the main and two-factor 
interaction effects should be estimable independently (see 
designs for first order models with two-factor interaction terms). 

• The star points are located on the main axes of the coded 
design on the same distance from the centre as the factorial 
points.  In other words, both the factorial and the star points lay 
on a hyper-sphere around the centre of the design.  

Central Composite designs
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Designs for second order order models 

• The centre point is replicated to estimate pure error.  

• This design involves five levels for each factor coded as (-α, -1, 
0, 1, α), α being the distance from each star point to the centre.  

• To provide the design the desirable property of rotatability, α
has to be chosen in such a way that star and factorial points 
belong to the same hyper-sphere.

Central Composite designs

Designs for second order order models 

3-factor Central Composite 
designs

Star point

Fact point

6 Centre point reps

20 treatments

Designs for second order order models 

Central Composite designs

The sequential possibilities of these designs are very useful in many 
problems.  

Firstly the factorial part of the design, including centre points, can be run 
to estimate a first order model.  If the lack of fit test, based on the 
replicated centre points, indicates that additional curvature is necessary, 
in a second step the design can be augmented with the star points to 
provide degrees of freedom for a second order model.  

Designs for second order order models 

Central Composite designs
Number of 
factors

Full or 
fractional 
factorial

Value 
for α

Number of 
factorial 
treatments

Numbe
r of star 
points

Number of 
replicated 
centre 
points

Total number 
of treatments

3 full 1.68 8 6 6 20

4 full 2 16 8 6 30

5 full 2.38 32 10 8 50

5 (1/2) ½
relication

2 16 10 8 34

6 full 2.83 64 12 10 86

6 (1/2) ½
relication

2.38 32 12 10 54

7 full 3.63 128 14 10 152

7 (1/2) ½
relication

2.83 64 14 10 88
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Treatment X1 X2 X3
1 1.00 1.00 -1.00
2 -1.00 1.00 -1.00
3 1.00 -1.00 -1.00
4 -1.00 -1.00 -1.00
5 1.00 1.00 1.00
6 -1.00 1.00 1.00
7 1.00 -1.00 1.00
8 -1.00 -1.00 1.00
9 1.68    (α) 0.00 0.00
10 -1.68    (-α) 0.00 0.00
11 0.00 1.68    (α) 0.00
12 0.00 -1.68    (-α) 0.00
13 0.00 0.00 1.68    (α)
14 0.00 0.00 -1.68    (-α)
15 0.00 0.00 0.00
16 0.00 0.00 0.00
17 0.00 0.00 0.00
18 0.00 0.00 0.00
19 0.00 0.00 0.00
20 0.00 0.00 0.00

3-factor Central Composite design

23 full factorial

centre points

star points

Practical considerations

What if the wrong model is assumed?

It is good practice to introduce a treatment in an experiment that can 
be used as a checkpoint to control the lack of fit.  A simple approach is 
to fit the model based on all treatments except the check point and 
then compare the predicted response in the check point with the real 
measured value.  For instance, this is an adequate procedure to test 
for possible curvature while fitting a first order model.

The statistical approach to lack of fit consists of the partitioning of the 
error sums of squares into pure experimental error and lack of fit. 

Investigation of the fitted model (1)

1. The optimum is located on the border of the experimental region.
In this situation a principal direction of improvement can be 
defined, directed to the new optimum.  A new experiment has to 
be carried out centred at the new sub-optimum, followed by re-
evaluation.  This is actually a procedure in search of the region of 
maximal response by consecutively fitting of first order models.
This procedure where an experimenter proceeds sequentially 
along the path of maximum increase in response is called the 
‘steepest ascent procedure’.  Ones the approximate location of the 
optimum is found a second order model is used to determine the 
optimum.

In the optimisation step the fitted response surface is 
investigated in search for the optimum.  Different situations 
occur in function of the location of the optimum:

Investigation of the fitted model (2)

2. Within the experimental region no optimum is found.  This means 
that the response is not affected by the compositional changes 
within the range of the experiment.  In other words the 
experimental region can be considered as a region of sub-optimal 
response.  If desirable a new experiment can be set up centred at 
the sub-optimum but increasing the ranges of all factors.  When 
fitting first order models carry out the lack of fit test to make sure 
that no curvature is present in the real model. 
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Investigation of the fitted model (3)

3. The optimum is found within the experimental region.  The 
objective is reached.  Double-check in case of local optima can 
be necessary.  The fitted second order model can be 
investigated and the optimum can be determined. 

Method of steepest ascent

• The procedure begins with a locale approximation of the true 
response surface with a hyper-plane (first order model) fitted 
over a small first order design. 

• This hyper-plane provides information to determine a direction 
toward which an increasing value of the response can be 
expected.

• In this direction a new first order experiment is set up and a first 
order model fitted.

• Again the direction of maximum increase is determined. And so 
on.

• The union of these directions form the path of steepest ascent.

The steepest ascent procedure consists of performing a sequence 
of experiments along the path of maximum increase in response.

Method of steepest ascent

Sub-optimal 
operating 
conditions

Direction of 
steepest 
ascent

22 factorial 
design

Method of steepest ascent
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Determination of the optimum for a second order model

Contour and perspective plots 
A contour plot is a two-dimensional smoothed graph showing 
contours of constant response in an axes system defined by two 
experimental factors xi and xj, while the other experimental factors 
are kept constant.  In most practical situations the fitted model 
should be plotted to allow preliminary evaluation of the model and 
determination of the optimum.  

Also perspective plots are a useful aid in interpretation of fitted 
models. 

Determination of the optimum for a second order model

0=
∂
∂
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Mathematical procedures

If a second order model is fitted, the direct way to find the 
optimum is by differentiating the response function with 
respect to the xi’s.  Setting al partial derivatives 

will determine the stationary point if it exists.  It has to be 
emphasised that this point can be either a maximum, a 
minimum or a saddle point of the fitted function 

Determination of the optimum for a second order model

Mathematical procedures
To determine the nature of the fitted surface and the stationary point, a 
canonical analysis has to be carried out.  This analysis consists of two 
steps.  

Firstly the origin of the axes system is translated to the stationary point 
(centring the design matrix).

In the second step the axes system is rotated in such a way that the new 
axes correspond to the principal axes of the response surface or contour 
system.

In the new coordinate system Wi the canonical form of the response 
function is given by: 

With       the estimated response at the stationary point. 0y

2
3

2
22
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Determination of the optimum for a second order model

Mathematical procedures
If all    are negative, a move in any direction from the stationary 
point results in a decrease in y.  Therefore the stationary point 
represents the point of maximum response. 

If all      are positive the stationary point is a minimum.  

When      differ in sign the stationary point will be a saddle point.

iλ

iλ

iλ
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Contour and perspective plots

Contour and  perspective plot of the second order model:

y = 50 + 0.2X1 + 0.3X2 - 1.5X1
2 - 1X2

2 - 1X1X2.  

The stationary point is a maximum. 

Contour and perspective plots

Contour and  perspective plot of the second order model:

y = 5 - X1 + 1.5X2 + 0.5X1
2 + X2

2 - 11X1X2.      

The stationary point is a saddle point.

Experimental Optimisation
Response Surface Methodology 

1. Definition of the region of interest 

2. Determination of the important factors and their ranges

3. Construction of an optimal design:

Screening designs for first order models  without/with interaction

Plackett-Burman Reflected P-B

Fractional factorial Larger fraction Fr Fact

Designs for second order models

Box Behnken

Central composite

3. Fitting of a polynomial model, describing the relation between a
numeric independent variable and the numeric dependent variables

4. Optimisation phase:  obtaining the optimal operating conditions by 
investigation of the mathematical model. 

Experimental Optimisation
Response Surface Methodology 

An example

SCHNEIDER AND STOCKETT (1963)  PERFORMED AN EXPERIMENT AIMED 
AT REDUCING THE UNPLEASANT ODOR OF A CHEMICAL PRODUCT WITH 
SEVERAL FACTORS. 

PETER W. M. JOHN, STATISTICAL DESIGN AND ANALYSIS OF EXPERIMENTS 
MACMILLAN 1971.

SAS program

SAS output in html
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Experimental Optimisation
Response Surface Methodology 


