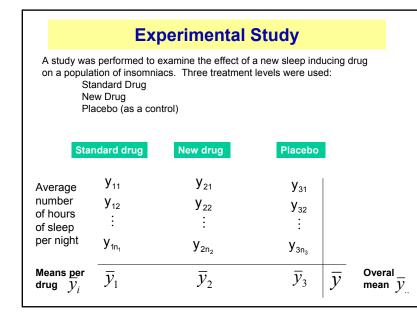
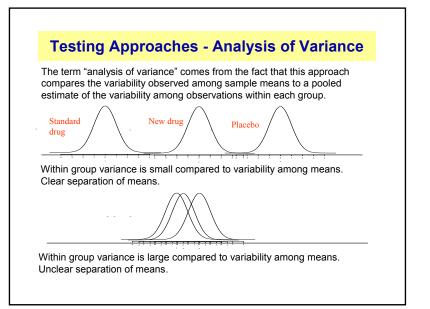


What's expected to be understood


- Multiple regression in Response Surface Methodology. Dependent and independent variables are numeric. The predicted response is studied.
- Specific designs for RSM were discussed.
- In all approaches Completely Randomised Designs are assumed.
- RSM in constrained experimental regions.


What's next?

What if experimental factors are categorical?

In many practical problems this is the case: fi gender, different drugs, different genes, insertions, varieties, bacterial strains, ...

Analysis of variance (ANOVA) models

Pooled Variance

From two-sample t-test with assumed equal variance, $\sigma^2,\;$ we produced a pooled (within-group) sample variance estimate.

$$t = \frac{\overline{y}_1 - \overline{y}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \quad s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Extend the concept of a pooled variance to t groups as follows:

$$s_w^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_t - 1)s_t^2}{(n_1 - 1) + (n_2 - 1) + \dots + (n_t - 1)} = \frac{SSW}{n_T - t} \qquad \qquad n_T = \sum_{i=1}^t n_i$$

If all the n_i are equal to n then this reduces to an average variance.

$$s_w^2 = \frac{1}{t} \sum_{i=1}^t s_i^2$$

Variance among Group MeansConsider the variance among the t group
means computed as:
$$\overline{y}_{\cdot \cdot} = \sum_{i=1}^{t} \overline{y}_i$$

 $\overline{y}_{\cdot \cdot} = \frac{\sum_{i=1}^{t} (\overline{y}_i - \overline{y}_{\cdot \cdot})^2}{t-1}$ If we assume each group is of the same size, say n, then, s is an estimate of
 σ^2/n . Hence, n times s is an estimate of σ^2 . When the sample sizes are
unequal, the estimate is given by. $\overline{y}_{B}^{t} = \frac{\sum_{i=1}^{t} n_i (\overline{y}_{i \bullet} - \overline{y}_{\bullet \bullet})^2}{t-1} = \frac{SSB}{t-1}$ $\overline{y}_{I \bullet} = \frac{1}{n_T} \sum_{i=1}^{t} \sum_{j=1}^{n_i} y_{ij}$

F-testNow we have two estimates of s². An F-test can be used to determine ifthe two statistics are equal. Note that if the groups truly have differentmeans,
$$s_b^2$$
 will be greater than s_w^2 . Hence the F-statistics is written as: $F = \frac{S_B^2}{s_w^2} \sim F_{(t-1),(n_T-t)}$ If H₀ holds, the computed F-statistics should be close to 1.If H_a holds, the computed F-statistic should be much greater than 1.We use the appropriate critical value from the F - table tohelp make this decision.Hence, the F-test is really a test of equality of means under the
assumption of normal populations and homogeneous variances.

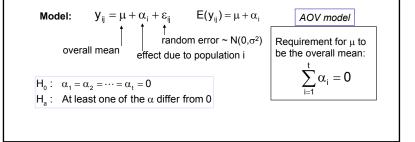
		of Sums of the AOV Ta	· · · · · ·	
$TSS = \sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_j)$ $SSB = \sum_{i=1}^{t} n_i (\overline{y}_i)$	$(\overline{y}_{ij} - \overline{y}_{ij})^2 = (n_T$	$(s-1)s^{2} = \sum_{i=1}^{t} \sum_{j=1}^{n_{i}} y_{i}^{2}$ $\frac{y_{i\bullet}^{2}}{2} = \frac{y_{\bullet\bullet}^{2}}{2}$	$\frac{2}{n_T} - \frac{y_{\bullet\bullet}^2}{n_T}$	
SSW = TSS - S	SSB			
1-1	1-1	n _i n _T	Mean Square	F Test
SSW = TSS - S	SSB Sum of	Degrees of		F Test s_B^2/s_W^2

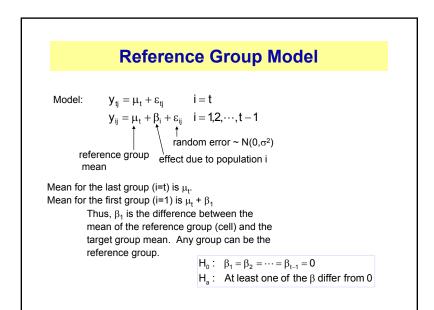
The Linear Model

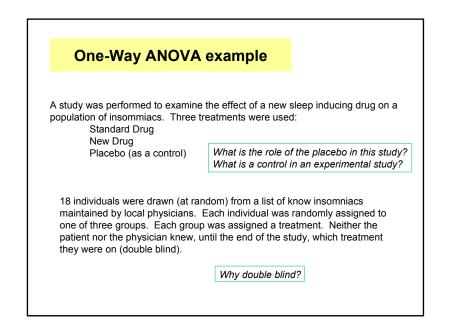
We have developed the one-way analysis of variance as an extension of the two-sample t-test with pooled variance. More complicated research designs require that we take a more formal, <u>model-based approach</u> to the analysis.

Much of statistical analysis is based on the general linear (regression) model structure. For the response y_{ij} for the ith group and jth individual or unit, we have.

$$y_{ij} = \mu_i + \varepsilon_{ij}$$


Where μ_i is the mean of the ith group and \mathcal{E}_{ij} is the deviations of the response from the mean of the group.

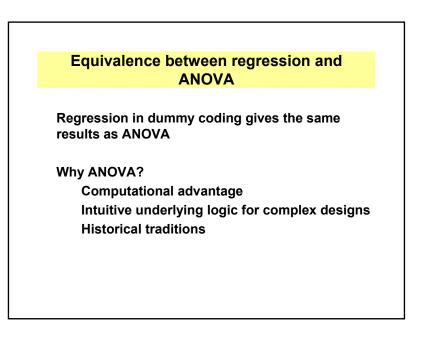

Usual assumption: $\epsilon_{ii} \sim N(0, s^2)$ residual or experimental error


Completely Randomized Design

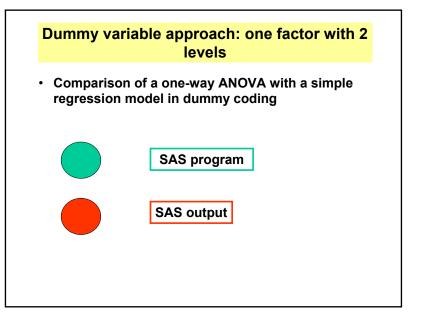
Assumptions:

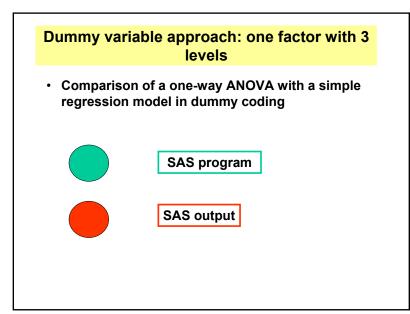
- Independent random samples (results of one sample do not effect other samples).
- Samples from normal population(s).
- Mean and variance for population i are respectively, μ_i and σ^2 .

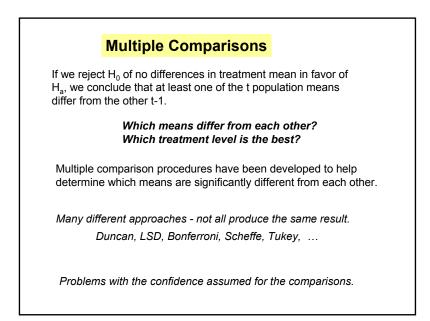
Response: Average number of hours of sleep per night.

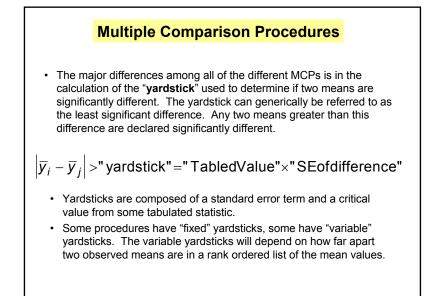

Placebo:	5.6,	5.7,	5.1,	3.8,	4.6,	5.1
Standard Drug:	8.4,	8.2,	8.8,	7.1,	7.2,	8.0
New Drug:	10.6,	6.6,	8.0,	8.0,	6.8,	6.6

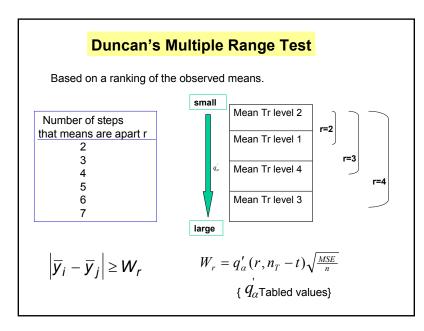
y_{ii} = response for the j-th individual on the i-th treatment.


,						Degrees			
		Standard	l i i i i i i i i i i i i i i i i i i i		Sums of	of	Mean		
	Placebo	Drug	New Drug	Source	Squares	Freedom	Square	F statistic	P-value
	5.60	8.40	10.60	Between Groups	33.16	2	16.582	2 15.04	0.000
	5.70	8.20	6.60	Within Groups	16.54	15	1.102	2	
	5.10	8.80	8.00	Total	49.70	17			
	3.80	7.10	8.00						
	4.60	7.20	6.80	$TSS \sum_{i=1}^{n} (y_{ij} - \overline{y}_{\bullet\bullet})$	= SS	SB	+ 3	SSW	
	5.10	8.00	6.60	$\nabla ($ –)	2 5	. –	,2	S (-	
sum	29.900	47.700	46.600	$\sum (y_{ii} - y_{\bullet \bullet})$	$= \sum$	$(y_{ii} - y_{i})$	•) +	∑_n _i (y _{i•}	– y.,)
mean	4.983	7.950	7.767	$\overline{i,j}$	<i>i</i> , <i>j</i>	,		i	
variance	0.494	0.455	2.359						
pooled var	iance		1.102						
SSW			16.537	140	$B = s_b^2 = b$	SSB			
	f the means		2.764	1/13	$D = S_b = $	t-1			
Between n	nean SSQ (SSB)	16.582						
				MS	$W = s_w^2 =$				
						$n_T - \iota$			
				E	MSB	E			
				r =	MSB MS₩ ~	Gf _b ,df _w			

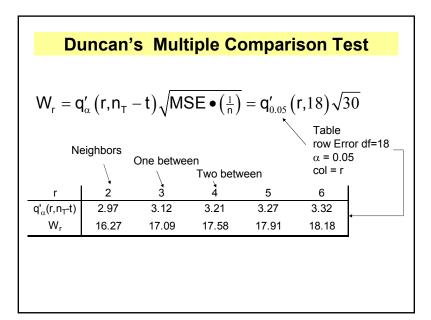

Response	Treatment	Dummy 1	Dummy 2		Reference gro	oup moo
5.6	Placebo	0	0	- /		
5.7	Placebo	0	0			
5.1	Placebo	0	0			
3.8	Placebo	0	0		SUMMARY OUTPUT	
4.6	Placebo	0	0			
5.1	Placebo	0	0	-	Regression Sta	
8.4	Standard Drug	1	0		Multiple R	0.8169
8.2	Standard Drug	1	0		R Square Adjusted R Square	0.6673
8.8	Standard Drug	1	0		Standard Error	1.0500
7.1	Standard Drug	1	0		Observations	1.0500
7.2	Standard Drug	1	0	-	oboonvatione	
8	Standard Drug	1	0			
10.6	New Drug	0	1			
6.6	New Drug	0	1			
8	New Drug	0	1			
8	New Drug	0	1			
6.8	New Drug	0	1			
6.6	New Drug	0	1			

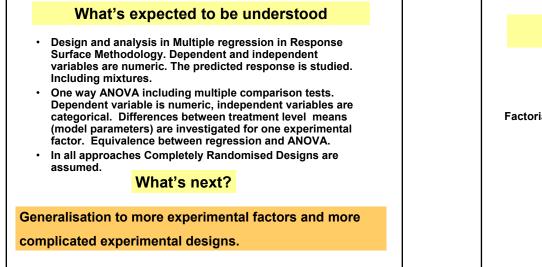

	Regression	ANOVA	output	S		nits of r nours s		rement
ANOVA								
	df	SS	MS	F	Sign F			
Regression	n 2	33.1633	16.582	15.041	0.0003			
Residual	15	16.5367	1.102					
Total	17	49.7000						
Intercept Dummy 1 Dummy 2	Coefficients 4.9833 2.9667 2.7833	Standard Error 0.429 0.606 0.606	<i>t Stat</i> 11.626 4.894 4.591	<i>P-value</i> 0.0000 0.0002 0.0004	<i>Lower</i> 95% 4.070 1.675 1.491	Upper 95% 5.897 4.259 4.075	95.0%	Upper 95.0% 5.897 4.259 4.075
						dard d	rug an	id placeb
	Placebo me	ean.						
	hat about diff			,				•

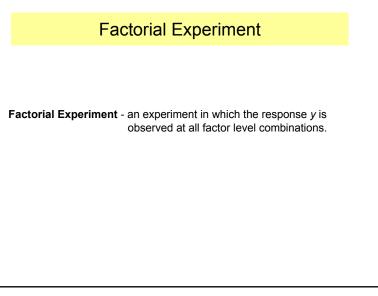

		SAS exam	ple		
		fect of 3 differe a nitrogen conte			
Which	is the best				
	Strain 1	Strain 2	Strain 3		
	y ₁₁	y ₂₁	y ₃₁		
Nitrogen content	y₁₂ ∶	У ₂₂ :	У ₃₂ :		
	$\mathbf{y}_{\mathbf{1n}_1}$	\mathbf{y}_{2n_2}	y _{3n3}		
Means <u>p</u> er strain y_i	$\overline{\mathcal{Y}}_1$	$\overline{\mathcal{Y}}_2$	\overline{y}_3 .	$\overline{\overline{\mathcal{Y}}}$ Ov	eral an

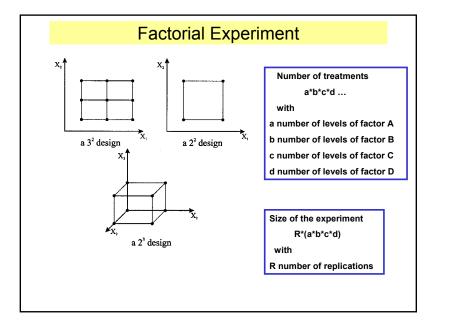


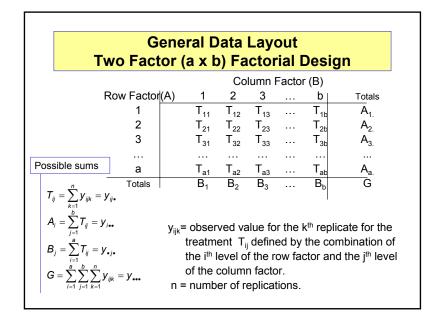
Problems with the confidence ass comparisons		i ule i	nunipie
Suppose we make c mutually orthogonal	E	rror Ra	ites
comparisons, each with Type I	Number of	Type I	Experimentwise
	comparsons		Error Rate
(comparisonwise) error rate of α . The	1	0.05	0.050
experimentwise error rate can be	2	0.05	0.098
•	3	0.05	0.143
approximated by:	4	0.05	0.185
	5	0.05	0.226
	6	0.05	0.265
C	7	0.05	0.302
a 1 $(1 \alpha)^{\circ}$	8	0.05	0.337
$e = 1 - (1 - \alpha)^{c}$	9	0.05	0.370
	10	0.05	0.401
	11	0.05	0.431
	12	0.05	0.460
	13	0.05	0.487
	14	0.05	0.512
	15	0.05	0.537
	16	0.05	0.560
	17	0.05	0.582
	18	0.05	0.603
	19	0.05	0.623
	20	0.05	0.642

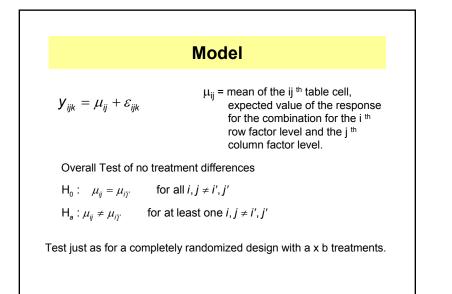


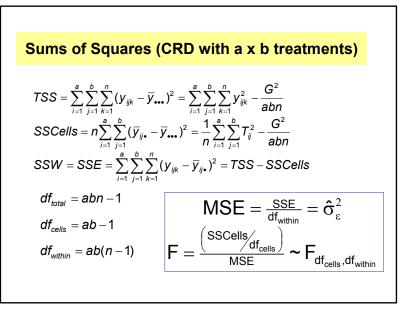

			ncai					-		••		
				tat	plec	l va	lue	S				
ТА	BLE	11	Percer	ntage_Po	ints of	the Du	ican Ne	w Muli	iple Ra	nge Tes	t	
E	nor				<i>r</i> =	numbe	r of orde	red step	s betwee	n means	-	
df	α	2	3	4	5	6	7	8	9	10	12	14
1	.05	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0
	.01	90.0	90.0	90.0	90.0	90.O	90.0	90.0	90.0	90.0	90.0	90.0
2	.05	6.09	6.09	6.09	6.09	6.09	6.09	6.09	6.09	6.09	6.09	6.09
	.01	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0
3	.05	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50
	.01	8.26	8.5	8.6	8.7	8.8	8.9	8.9	9.0	9.0	9.0	9.1
4	.05	3.93	4.01	4.02	4.02	4.02	4.02	4.02	4.02	4.02	4.02	4.02
-	.01	6.51	6.8	6.9	7.0	7.1	7.1	7.2	7.2	7.3	7.3	7.4
5	.05	3.64	3.74	3.79	3.83	3.83	3.83	3.83	3.83	3.83	3.83	3.83
	.01	5.70	5.96	6.11	6.18	6.26	6.33	6.40	6.44	6.5	6.6	6.6
6	.05	3.46	3.58	3.64	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68
	.01	5.24	5.51	5.65	5.73	5.83	5.81	5.95	6.00	6.0	6.1	6.2
7	.05	3.35	3.47	3.54	3.58	3.60	3.61	3.61	3.61	3.61	3.61	3.61
	.01	4.95	5.22	5.37	5.45	5.53	5.61	5.69	5.73	5.8	5.8	5.9
8	.05	3.26	3.39	3.47	3.52	3.55	3.56	3.56	3.56	3.56	3.56	3.56
	.01	4.74	5.00	5.14	5.23	5.32	5.40	5.47	5.51	5.5	5.6	5.7
9	.05	3.20	3.34	3.41	3.47	3.50	3.52	3.52	3.52	3.52	3.52	3.52
	.01	4.60	4.86	4.99	5.08	5.17	5.25	5.32	5.36	5.4	5.5	5.5
10	.05	3.15	3.30	3.37	3.43	3.46	3.47	3.47	3.47	3.47	3.47	3.47
	.01	4.48	4.73	4.88	4.96	5.06	5.13	5.20	5.24	5.28	5.36	5.42
11	.05	3.11	3.27	3.35	3.39	3.43	3.44	3.45	3.46	3.46	3.46	3.46
	.01	4.39	4.63	4.77	4.86	4.94	5.01	5.06	5.12	5.15	5.24	5.28
12	.05	3.08	3.23	3.33	3.36	3.40	3.42	3.44	3.44	3.46	3.46	3.46
	.01	4.32	4.55	4.68	4.76	4.84	4.92	4.96	5.02	5.07	5.13	5.17
13	.05	3.06	3.21	3.30	3.35	3.38	3.41	3.42	3.44	3.45	3.45	3.46
	.01	4.26	4.48	4.62	4.69	4.74	4.84	4.88	4.94	4.98	5.04	5.08
14	.05	3.03	3.18	3.27	3.33	3.37	3.39	3.41	3.42	3.44	3.45	3.46
	.01	4.21	4.42	4.55	4.63	4.70	4.78	4.83	4.87	4.91	4.96	5.00
15	.05	3.01	3.16	3.25	3.31	3.36	3.38	3.40	3.42	3.43	3.44	3.45
	.01	4.17	4.37	4.50	4.58	4.64	4.72	4.77	4.81	4.84	4.90	4.94

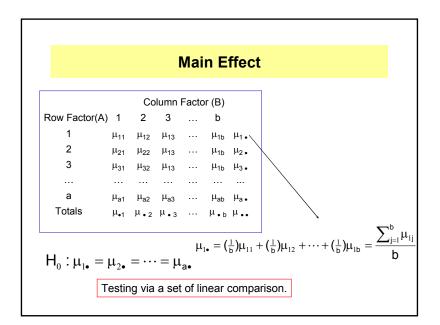

Study Objective:	Test six varieties of wheat for resistance to a particular race of stem rust.
Experimental factor	Wheat Variety
Levels:	A(i=1), B (i=2), C (i=3), D (i=4), E (i=5)
Experimental Unit:	Pot of well mixed potting soil.
Replication:	Four pots per treatment, four plants per pot.
Randomization:	Varieties randomized to 24 pots (CRD)
Response:	Yield (Y _{ij}) (in grams) of wheat variety(i) at maturity in pot (j).
Implementation Notes:	Six seeds of a variety are planted in a pot. Once plants emerge, the four most vigorous are retained and inoculated with stem rust.

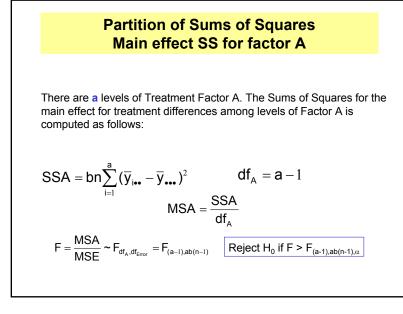

Rank	Variety	Mean Yield	l
5	А	50.3	
4	В	69.0	
6	С	24.0	
2	D	94.0	
3	Е	75.0	$n_1 = n_2 = n_3 = n_4 = n_5 = n_4$
1	F	95.3	1 2 3 4 3
ANOV	A Table)	
Source	df	MeanSquare	F
Variety	5	2976.44	24.80**
Error	18	120.00	

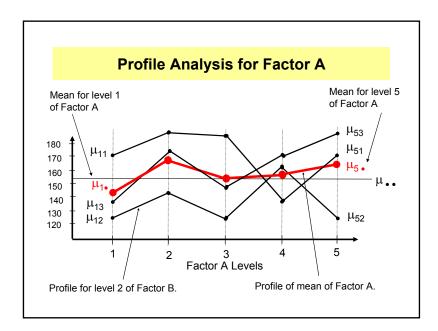


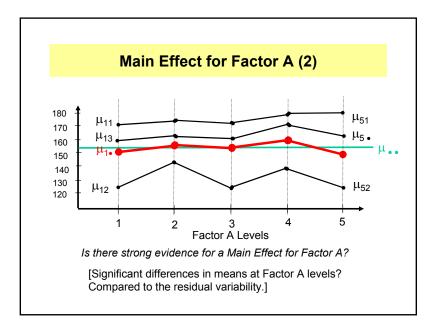

uncar	n'sTest	r	2	3	4	5	6
		q' _α (r,n _T -t)	2.97	3.12	3.21	3.27	3.32
		Wr	16.27	17.09	17.58	17.91	18.18
		С	А	В	E	D	F
		24.0	50.3	69.0	75.0	94.0	95.3
С	24.0)	26.3 🛔	45.0 韋	51.0 🕇	70.0 📫	71.3
Α	50.3	3	-	18.7 🚦	24.7 🛔	43.7	45.0
В	69.0	D			6.0	25.0	26.3
E	75.0	D C				19.0	20.3
D	94.0	D C				-	1.3
F	95.3	3					
+	Implies that t	he two treatment I	evel means a	are statistically	/ different at	the α = 0.05	level.
	с ^а	A ^b	в ^с	E ^C	D d	F ^d	
	24.0	50.3	69.0	75.0	94.0	95.3	
		: Means with		•			

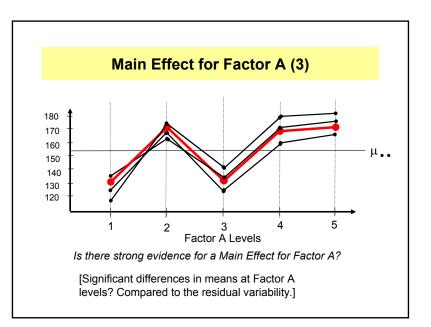


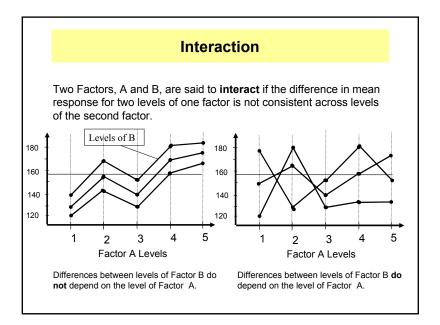


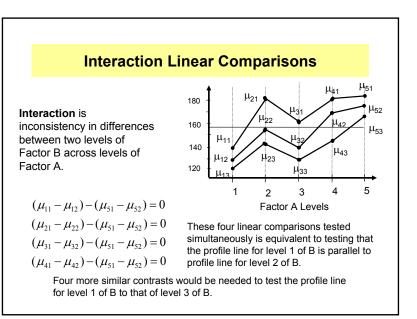


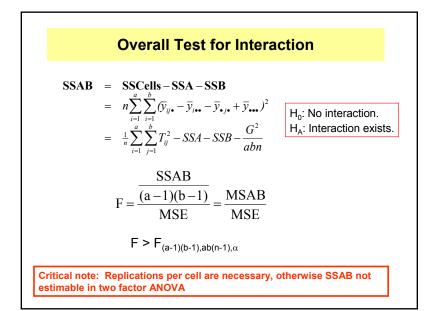




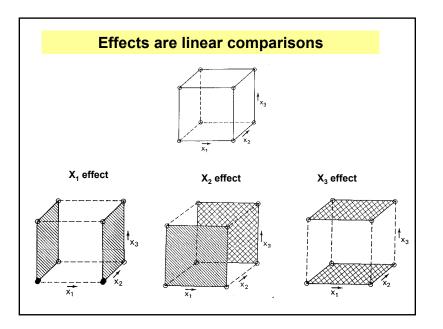

After the Overall F test As with any experiment, if the hypothesis of equal cell means is rejected, the next step is to determine where the differences are. In a factorial experiment, there are a number of effects that are always of interest. Main Effect of Treatment Factor A - Are there differences in the means of the factor A levels (averaged over the levels of factor B). Main Effect of Treatment Factor B - Are there differences in the means of the factor B levels (averaged over the levels of factor A). Interaction Effects of Factor A with Factor B - Are the differences between the levels of factor A the same for all levels of factor B? (or equivalently, are the differences among the levels of factor B the same for all levels of factor A?

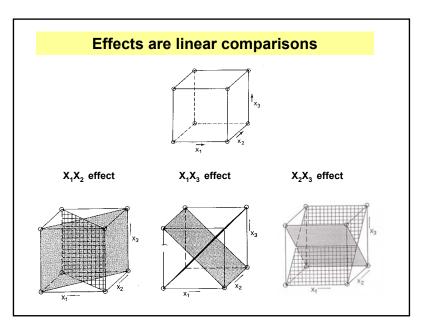


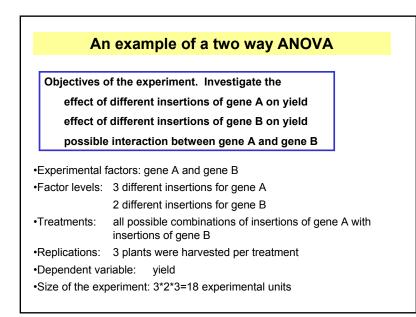

				actor (B)	
Row Factor(A)	1	2	b=3		
1	μ ₁₁	μ_{12}	μ_{13}	μ1.	$\mu_{1\bullet} = (\frac{1}{3})\mu_{11} + (\frac{1}{3})\mu_{12} + (\frac{1}{3})\mu_{13}$
2	μ_{21}	μ_{22}	μ_{13}	μ_2 .	
3	μ_{31}	μ_{32}	μ_{13}	μ3.	-
4	μ_{41}	μ_{42}	μ_{43}	μ4.	Model: $E(y_{ijk}) = \mu_{ij} = \mu + \alpha_i + \beta_j$
a=5	μ_{51}	μ_{52}	μ_{53}	μ _{5•}	
Totals	μ.1	μ.2	μ.3	μ	
H_0 : $\mu_{1\bullet}$	$=\mu_2$	• = ·	·· = I	μ _{a•}	Testing via a set of linear comparison
L1: $\mu_{1\bullet} = L2: \mu_{2\bullet} = L3: \mu_{3\bullet} = L4: \mu_{4\bullet} = L4:$	$-\mu_{5\bullet} = -\mu_{5\bullet} = -\mu_{$	$0 \equiv \alpha_2$ $0 \equiv \alpha_3$	$-\alpha_5 = -\alpha_5 =$	= 0 = 0	Not mutually orthogonal, but together they represent a-1=4 dimensions of comparison.

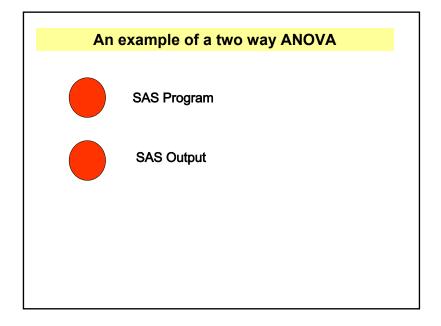

Partition of Sums of Squares Main effect SS for factor B

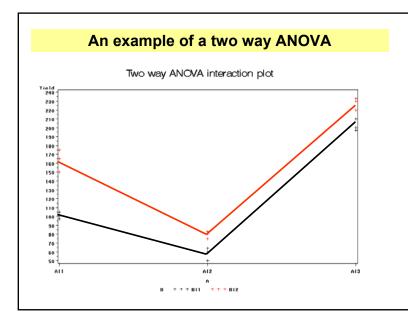
There are b levels of Treatment Factor B. The Sums of Squares for the main effect for treatment differences among levels of Factor B is computed as follows:

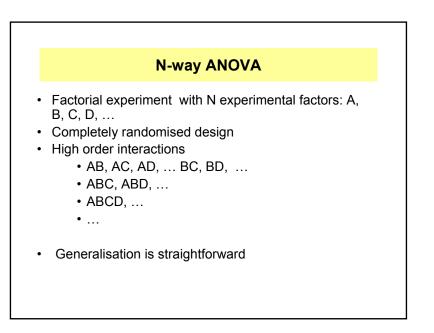

$$\begin{split} SSB &= an \sum_{j=1}^{b} (\overline{y}_{\bullet j \bullet} - \overline{y}_{\bullet \bullet \bullet})^{2} \qquad df_{B} = b - 1 \\ MSB &= \frac{SSB}{df_{B}} \\ F &= \frac{MSB}{MSE} \thicksim F_{df_{B}, df_{Error}} = F_{(b-1), ab(n-1)} \qquad \text{Reject } H_{0} \text{ if } F > F_{(b-1), ab(n-1), \alpha} \end{split}$$








	Partitioning of Total Sums of Squares ANOVA table				
	TSS = SSCells + SSE = SSA + SSB + SSAB + SSE				
	ANOVA Table				
S	ource	df	SS	MS	F
В	etween Cells	ab-1	SSCells	MSCells	MSCELLS/MSE
	Factor A	a-1	SSA	MSA	MSA/MSE
	Factor B	b-1	SSB	MSB	MSB/MSE
	Interaction	(a-1)(b-1)	SSAB	MSAB	MSAB/MSE
Е	rror(Within Cells)	ab(n-1)	SSE	MSE	
Т	otal (corrected)	abn-1	TSS		



What's expected to be understood

- Multiple regression in Response Surface Methodology. Dependent and independent variables are numeric. The predicted response is studied.
- N- way ANOVA including multiple comparison tests. Dependent variable is numeric, independent variables are categorical or fixed numeric. Differences between treatment level means are investigated for N experimental factors, including possible interaction effects between factors. Model parameters are investigated.
- In all approaches Completely Randomised Designs are assumed.

What's next?

Generalisation to more complicated experimental designs: Randomised Block and Latin Squares Designs