Lecture 2
Analysis of Variance

Eddie Schrevens

What'’s expected to be understood

» Multiple regression in Response Surface Methodology.
Dependent and independent variables are numeric. The
predicted response is studied.

» Specific designs for RSM were discussed.

* In all approaches Completely Randomised Designs are
assumed.

* RSM in constrained experimental regions.

What’s next?
What if experimental factors are categorical?
In many practical problems this is the case: fi gender, different

drugs, different genes, insertions, varieties, bacterial strains, ...

Analysis of variance (ANOVA) models

Experimental Study

A study was performed to examine the effect of a new sleep inducing drug
on a population of insomniacs. Three treatment levels were used:
Standard Drug
New Drug
Placebo (as a control)
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Testing Approaches - Analysis of Variance

The term “analysis of variance” comes from the fact that this approach
compares the variability observed among sample means to a pooled
estimate of the variability among observations within each group.

Standard
drug

New drug

Placebo

Within group variance is small compared to variability among means.
Clear separation of means.

Within group variance is large compared to variability among means.
Unclear separation of means.




Pooled Variance

From two-sample t-test with assumed equal variance, o2, we produced a
pooled (within-group) sample variance estimate.
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Extend the concept of a pooled variance to t groups as follows:
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If we assume each group is of the same size, say n, then, s is an estimate of

o?/n. Hence, n times s is an estimate of 2. When the sample sizes are
unequal, the estimate is given by.
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If all the n; are equal to n then this reduces to an average variance.
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F-test

Now we have two estimates of s2. An F-test can be used to determine if
the two statistics are equal. Note that if the groups truly have different
means, s, will be greater than s,2. Hence the F-statistics is written as:
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If Hy holds, the computed F-statistics should be close to 1.

If H, holds, the computed F-statistic should be much greater than 1.

We use the appropriate critical value from the F - table to
help make this decision.

Hence,the F-test is really a test of equality of means under the
assumption of normal populations and homogeneous variances.
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The Linear Model

We have developed the one-way analysis of variance as an extension of the
two-sample t-test with pooled variance. More complicated research designs
require that we take a more formal, model-based approach to the analysis.

Much of statistical analysis is based on the general linear (regression) model
structure. For the response y; for the ith group and jth individual or unit, we
have.

Yi= U +&

Where ; is the mean of the it group and &; is the deviations of the
response from the mean of the group. ‘

Usual assumption: g; ~ N(0, s?) residual or experimental error

Completely Randomized Design

Assumptions:

* Independent random samples (results of one sample do not effect
other samples).

+  Samples from normal population(s).

» Mean and variance for population i are respectively, p; and c2.

Model: Yy =H+0;+g E(y)) =p+o AOV model
t

random error ~ N(0,62) | Requirement for p to
overallmean .ttt due to population i be the overall mean:
t
Hy: oy=0,=-=0a,=0 2(1‘:0
e
H,: Atleast one of the a differ from 0

Reference Group Model

Model: Yy =R tgy i=t
Yy =R +Bi+eg i=12-1-1

random error ~ N(0,02)

reference group  offect due to population i
mean
Mean for the last group (i=t) is p,.
Mean for the first group (i=1) is p, + B,
Thus, B, is the difference between the
mean of the reference group (cell) and the
target group mean. Any group can be the
reference group.
Ho: By=B,=-=B,=0
H,: Atleast one of the f differ from 0

One-Way ANOVA example

A study was performed to examine the effect of a new sleep inducing drug on a
population of insommiacs. Three treatments were used:
Standard Drug
New Drug

Placebo (as a control) What is the role of the placebo in this study?
What is a control in an experimental study?

18 individuals were drawn (at random) from a list of know insomniacs
maintained by local physicians. Each individual was randomly assigned to
one of three groups. Each group was assigned a treatment. Neither the
patient nor the physician knew, until the end of the study, which treatment
they were on (double blind).

Why double blind?




ANOVA

Response: Average number of hours of sleep per night.

Placebo: 5.6, 5.7, 5.1, 3.8, 4.6, 5.1
Standard Drug: 8.4, 8.2, 8.8, 7.1, 7.2, 8.0
New Drug: 10.6, 6.6, 8.0, 8.0, 6.8, 6.6

y; = response for the j-th individual on the i-th treatment.

Degrees
Standard Sums of of Mean
Placebo Drug  New Drug Source Squares Freedom Square F statistic P-value
5.60 8.40 10.60 Between Groups 33.16 2 16.582 15.04  0.00026
5.70 8.20 6.60 Within Groups 16.54 15 1.102
5.10 8.80 8.00 Total 49.70 17
3.80 7.10 8.00
4.60 7.20 6.80 7SS - SSB +SSwW
5.10 8.00 6.60

— 2 — 2 — — 2
sum 29900 47700 46800 2 (Vj—Vee) =2 (Vj=Vie)  +2M(Fie=Tur)
mean 4.983 7.950 7.767 ij ij i

variance 0.494 0.455 2.359

pooled variance 1.102

Linear Model Approach

Reference group model

Response Treatment Dummy 1 Dummy 2
5.6 Placebo 0 0
5.7 Placebo 0 0
5.1 Placebo 0 0
3.8 Placebo 0 0 SUMMARY OUTPUT
4.6 Placebo 0 0
5.1 Placebo 0 0 Regression
8.4 Standard Drug 1 0 gus'“z':r: gg;sg
8.2 Standard Drug ! 0 Adj\?sted R Square 0.6229
8.8 Standard Drug ! 0 Standard Error 1.0500
71 Standard Drug 1 0 Observations 18
7.2 Standard Drug 1 0
8 Standard Drug 1 0
10.6 New Drug 0 1
6.6 New Drug 0 1
8 New Drug 0 1
8 New Drug 0 1
6.8 New Drug 0 1
6.6 New Drug 0 1

ssw 16.537 2SS
variance of the means 2.764 MSB = Sp = ﬁ
Between mean SSQ (SSB) 16.582 5 SSwW
MSW =s,, =——
ny—t
MSB
F=2sw ™~ Fona,
Regression ANOVA outputs Units of measurement
= hours sleep.
ANOVA
df SS MS F Sign F
Regression 2 33.1633 16.582  15.041 0.0003
Residual 15 16.5367 1.102
Total 17 49.7000
Standard Lower  Upper Lower Upper
Coefficients Error t Stat __ P-value 95% 95% 95.0% 95.0%
Intercept . 4.9833 0.429 11.626  0.0000 4.070 5.897 4.070 5.897
Dummy 1 2.9667 0.606 4.894 0.0002 1.675 4.259 1.675 4.259
Dummy 2 2.7833 . |0.606 4.591 0.0004 1.491 4.075  1.491 4.075
Yy =M+ & i=t

Vi = +B e i=12t-1
Mean difference between standard drug and placebo.

Mean difference between new drug and placebo.

Placebo mean.

What about difference between new drug and standard drug?

Equivalence between regression and
ANOVA

Regression in dummy coding gives the same
results as ANOVA

Why ANOVA?
Computational advantage
Intuitive underlying logic for complex designs
Historical traditions




SAS example

Investigate the effect of 3 different strains of
Rhizobium on the nitrogen content in clover

Which is the best strain?

 Strain 1 S strain 2 [N Strain3 |

Y1 Y1 VEY
Nitrogen Y12 Yo Va0
content : : .
Yin, Yon, Ysn,
Means per s ey by - Overal __
strain )/, yl y2 V3 y mean )

Dummy variable approach: one factor with 2
levels

+ Comparison of a one-way ANOVA with a simple
regression model in dummy coding

‘ | SAS program |

Dummy variable approach: one factor with 3
levels

+ Comparison of a one-way ANOVA with a simple
regression model in dummy coding

‘ | SAS program |

‘ SAS output

Multiple Comparisons

If we reject H, of no differences in treatment mean in favor of
H,, we conclude that at least one of the t population means
differ from the other t-1.

Which means differ from each other?
Which treatment level is the best?

Multiple comparison procedures have been developed to help
determine which means are significantly different from each other.

Many different approaches - not all produce the same resuilt.
Duncan, LSD, Bonferroni, Scheffe, Tukey, ...

Problems with the confidence assumed for the comparisons.




Problems with the confidence assumed for the multiple

comparisons
Error Rates
Suppose we make ¢ mutually orthogonal
Comparlsons, eaCh Wlth Type I Number of Type | Experimentwise
(comparisonwise) error rate of a.. The comparsons. Error Rate - Error Rate
experimentwise error rate can be 2 0.05 0.098
: . 3 0.05 0.143
approximated by: M o008 0185
5 0.05 0.226
6 0.05 0.265
C 7 0.05 0.302
8 0.05 0.337
e = 1—(1—0() 9 0.05 0.370
10 0.05 0.401
" 0.05 0.431
12 0.05 0.460
13 0.05 0.487
14 0.05 0.512
15 0.05 0.537
16 0.05 0.560
17 0.05 0.582
18 0.05 0.603
19 0.05 0.623
20 0.05 0.642

Multiple Comparison Procedures

» The major differences among all of the different MCPs is in the
calculation of the “yardstick” used to determine if two means are
significantly different. The yardstick can generically be referred to as
the least significant difference. Any two means greater than this
difference are declared significantly different.

‘)7,- - )7/-‘ >"yardstick"="TabledValue"x" SEofdifference"

» Yardsticks are composed of a standard error term and a critical
value from some tabulated statistic.

» Some procedures have “fixed” yardsticks, some have “variable”
yardsticks. The variable yardsticks will depend on how far apart
two observed means are in a rank ordered list of the mean values.

Duncan’s Multiple Range Test

Based on a ranking of the observed means.

Number of steps

that means are apart r Mean Tr level 1

Mean Tr level 2
r=2

r=3

% | Mean Trlevel 4
r=4

Mean Tr level 3

~NOoO O~ WN

_ _ N
yl_yj‘ZWr Wr_qa(r’nT t) n

{ q,Tabled values}

Duncan’s multiple range test
tabled values

TABLE 71 Percenlage Points of the Duncan New Multiple Range Test

r = pumber of ordered steps between means

o 2 3 4 5 6 7 8 9 10 iz 14

1 .05 180 180 180 i8.0 185 180 180 180 150 180 180
-01 90,0 9RO 90.0  90.0 904G 90.0 90.0 90.¢ 900 90.C 900
2 .65 609 609 609 60Y 60% 609 0% 609 603 600 609

01 140 140 140 140 140 140 140 140 140 T4 14.0

3 05 456 450 450 450 456 4.50 450 450 4.50 4.50  4.50
o1 826 B85 8.6 &7 8.8 8.9 8.9 5.0 vo 20 a1

4 .05 393 401 402 402 4.02 402 4.02 4.02 4062 402 402
o1 651 6.8 6.2 z.0 71 7.1 7.2 7.2 7.3 7.3 7.4

5 05 364 374 379 383  3.63  2.83 383 3.83 383 383 3.83
01 570 596 611 618  6.26 6£.33  6.40 G.44 6.5 6.6 6.6

6 .05 346 3.58 3.64 368 368 368 3685 168 368 168 368
.01 5.24 551 565 S.72 583 581 595 600 6.0 6.1 6.2

7 05 335 347 354 358 360 26T 361 3.61 361 361 361
.01 495 522 537 545 S.53 56T 569 5.7 5.8 5.8 s.9

# 05 326 239 347 3.52 3.55 356 356 3.56 356 156 3.56
©1 474 500 5.4 523 532 540 5.47 551 55 5.6 5.7

@ .65 320 334 341 347 350 152 3.5z 3.52 352 352 357
01 4.60  4.86 4.9% 508 5.17 535 532 536 S.a4 5.5 55

10 .05 315 330 337  3.43  3.46 347 3.47 347 347  3.47 147
01 448 473 488 396 506 513 520 524 528 536  5.42
105 3001 3.2/ 335 3,30 3,43 344 3.45 346 346 3.46  3.46
D1 433 463 477 486 495 501 506 532 5.5 524 528

12 .05 208  3.23  3.331 336 340 3.42 3.44 344 346 346  3.46
01 432 455 468 476 484 49> 496 502 507 513 517

13 .05 206 327 330 335  3.35 341 3.42 .44  3.45  3.45  3.46

201 426 448 462  9.69 474 484 4.88 494 495 S.04 508
14 0% 303 3,18 37 3,33 3.37  3.39 341 3,42 344 3.45 346

20T 421 242 455 4863 470 478 4.8 487 497  4.96  5.00
s .05 3.001 316 335 3.31 336 3.38 340 3.42 343 334 345
81 437 437 450 458 464 472 477 481 484 490 4.94




Example of multiple comparison

Study Objective: Test six varieties of wheat for resistance to a
particular race of stem rust.

Experimental factor Wheat Variety

Levels: A(i=1), B (i=2), C (i=3), D (i=4), E (i=5)
Experimental Unit: Pot of well mixed potting soil.

Replication: Four pots per treatment, four plants per pot.
Randomization: Varieties randomized to 24 pots (CRD)
Response: Yield (Y;) (in grams) of wheat variety(i) at

maturity in pot (j).

Implementation Notes: Six seeds of a variety are planted in a pot.
Once plants emerge, the four most vigorous are
retained and inoculated with stem rust.

Statistics and AOV Table

Rank Variety Mean Yield

Duncan’s Multiple Comparison Test

W, =g, (r,n; —t)JMSE o (1) = q; ,, (,18)/30

\ Table
row Error df=18

Neighbors One between o =0.05
\ Twc: between col =r
r 2 3 4 5 6
q.nrt) | 2,97 312 3.21 3.27 3.32
W, 16.27 17.09 17.58 17.91 18.18

5 A 50.3
4 B 69.0
6 C 24.0
2 D 94.0
3 E 75.0 n,=n,=n,=n,=ngs=n=4
1 F 95.3
ANOVA Table
Source df MeanSquare F
Variety 5 2976.44 24.80**
Error 18 120.00
Duncan’sTest r 2 3 4 5 6
q',(r.nrt) 2.97 3.12 3.21 3.27 3.32
W, 16.27 17.09 17.58 17.91 18.18
C
24.0
C 24.0 -
A 50.3
B 69.0
E 75.0
D 94.0
F 95.3 -

1 Implies that the two treatment level means are statistically different at the a. = 0.05 level.

A B® EC p¢ F

24.0 50.3 69.0 75.0 94.0 95.3

Duncan grouping: Means with the same letter are not significantly different




What’s expected to be understood

» Design and analysis in Multiple regression in Response
Surface Methodology. Dependent and independent
variables are numeric. The predicted response is studied.
Including mixtures.

* One way ANOVA including multiple comparison tests.
Dependent variable is numeric, independent variables are
categorical. Differences between treatment level means
(model parameters) are investigated for one experimental
factor. Equivalence between regression and ANOVA.

* In all approaches Completely Randomised Designs are

assumed.
What’s next?

Generalisation to more experimental factors and more

complicated experimental designs.

Factorial Experiment

Factorial Experiment - an experiment in which the response y is

observed at all factor level combinations.

Factorial Experiment

X, X,

Number of treatments

a*b*c*d ...

with

a number of levels of factor A

a3 design ! a2* design b number of levels of factor B
X, c number of levels of factor C

d number of levels of factor D

Size of the experiment

X, . R*(a*b*c*d)
a2 design

with

R number of replications

General Data Layout
Two Factor (a x b) Factorial Design

Column Factor (B)

Row Factor(A) 1 2 3 .. b Totals
1 T11 T12 T13 T1b A1.
2 Tor Ty Ty oo Ty Ay
3 Tar T Tay o oo Ty As
Possible sums a To T Ta .. T A,
n Totals B, B, By .. By G
T/y = Zyijk =VYi.
k;1
A= ;T] = Ve y;= observed value for the k*" replicate for the
5 - a T <y, treatment T; defined by the combination of
L the it level of the row factor and the jt" level
G- Za:iil’w . of the column factor.
i k=t n = number of replications.




Model

W;j = mean of the ij ™ table cell,

Yik = My + & expected value of the response
for the combination for the i th
row factor level and the j th
column factor level.

Overall Test of no treatment differences
H, : My = My foralli,j=1i',j'

H, uy # wyy for atleastone/,j =1/,

Test just as for a completely randomized design with a x b treatments.

Sums of Squares (CRD with a x b treatments)

a n

b a b n G2
TSS =322 Wy =V =222 Vi

After the Overall F test

As with any experiment, if the hypothesis of equal cell means is
rejected, the next step is to determine where the differences are.

In a factorial experiment, there are a number of effects that are
always of interest.

» Main Effect of Treatment Factor A - Are there differences in the
means of the factor A levels (averaged over the levels of factor B).

» Main Effect of Treatment Factor B - Are there differences in the
means of the factor B levels (averaged over the levels of factor A).

 Interaction Effects of Factor A with Factor B - Are the
differences between the levels of factor A the same for all levels of
factor B? (or equivalently, are the differences among the levels of
factor B the same for all levels of factor A?

P i1 =1 k=1 abn
a i( ) 1& iTZ GZ
SSCells =n Yie=Yu) == i T
= j=1 ' n=5= ' abn
a b n
SSW =SSE =>">">(y; —¥,.)* =TSS - SSCells
i=1 j=1 k=1
f i = abn -1 SSE _ A2
MSE T dfinin .
dfcells =ab-1
(ssca%f j
dfwtlhln - ab(n_1) F = colls/ ~ F
MSE dfcells ’dfwithin
Main Effect
Column Factor (B)
Row Factor(A) 1 2 3 .. b
1 War M2 Mg - Bap B4,
2 Ha1 Mz M43 - Hip Hoe
3 Ha1  Maz M1z - Hip Ha.
a Hat  Haz  Haz Hap  Hae
Totals Mg Moz Mag - Hep Hoo
b
Z-: My
e = @+ e 00 b = =0
HO :Mlo :HZO :'”:l’ta.

‘ Testing via a set of linear comparison. ‘




Partition of Sums of Squares
Main effect SS for factor A

There are a levels of Treatment Factor A. The Sums of Squares for the

main effect for treatment differences among levels of Factor A is
computed as follows:

SSA =bn). (y.. - V...)’ df, =a-1

i=1
A
MSA = i
df,
MSA . .
MSE ~ Pty e — F(afl),ab(nfl) ’ Reject H, if F > F a-1),ab(n-1),00

Profile Analysis for Factor A

Mean for level 1 Mean for level 5
of Factor A of Factor A

» Ms3
, Ms1
Hs.

180
170 1 14
160 1
150 T Mo
140

130 1 =
120 + M2

' ;
1 2 3
Factor A Levels

Profile for level 2 of Factor B.

M.C

——
)]

Profile of mean of Factor A.

Main Effect for Factor A (2)

180 7 __————————
170 4 Hle——m—— ' Hs1
160 1 HM13e *.7/0\ » Hs.
150 T Ft‘].? \ “-.
140 /\/
:28 1 w2 \. Y]
1 2 3 4 5

Factor A Levels
Is there strong evidence for a Main Effect for Factor A?

[Significant differences in means at Factor A levels?
Compared to the residual variability.]

Main Effect for Factor A (3)

180
170 T
160 T
150 T
140

130 T
120 T

Factor A Levels
Is there strong evidence for a Main Effect for Factor A?

[Significant differences in means at Factor A
levels? Compared to the residual variability.]
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Main Effect Linear Comparisons-Factor A

Column Factor (B)

Row Factor(A) 1 2 b=3
1 = (1 1 1
Hi Hiz Hyz Hi.o ulo _(3)M11 +(3)M12 -|-(3)M13
2 Ha1 Haz Hiz Moo
3 Ha1 Haz Hig Hs.
4 Haq Mz Mgz Mo Model: E(yijk) S =ptog+ BJ
a=5 Hsq M5 Hsz  Ms.
Totals M Hap M.z M.,
H0 U, =y == Uy, Testing via a set of linear comparison.

LIt p,-ps,=0=0,-05=0

Not mutually orthogonal, but
together they represent a-1=4
dimensions of comparison.

L2: pp—ps=0=a,-a;=0
L3: py-ps,=0=a,-a;=0
L4: p,-p.=0=0,-0;=0

Partition of Sums of Squares
Main effect SS for factor B

There are b levels of Treatment Factor B. The Sums of Squares for
the main effect for treatment differences among levels of Factor B is
computed as follows:

b
SSB=an) (V.. - V¥..) dfy =b -1

=1
MsB = S5B
dfg

MSB
MSE ~ Pty e

= F(b—l),ab(n—]) ‘ Reject H, if F > F b-1).ab(n-1).0

Interaction

Two Factors, A and B, are said to interact if the difference in mean
response for two levels of one factor is not consistent across levels
of the second factor.

Levels ofBT

s = L NA

A D

120 120
2 3 4 5 1 2 3 4 5
Factor A Levels Factor A Levels
Differences between levels of Factor B do Differences between levels of Factor B do
not depend on the level of Factor A. depend on the level of Factor A.

Interaction Linear Comparisons

Hs1
180 1 H2q “:l——"
Interaction is : by Me%.//' Hs2
inconsistency in differences 160 42 s
between two levels of H1q L /
Factor B across levels of 140 Iy /;lzg\ / a3
Factor A. 120

L3 Hs3

1 2 3 4 5
(a4, = ) — (s, — p15,) =0 Factor A Levels

(£t — #y) — (s, — f15,) =0 These four linear comparisons tested

_ _ _ =0 simultaneously is equivalent to testing that
(hts) = p2) = (ptsy = #52) the profile line for level 1 of B is parallel to
(pyy = py)— (@5, — 15,) =0 profile line for level 2 of B.

Four more similar contrasts would be needed to test the profile line
for level 1 of B to that of level 3 of B.
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Partitioning of Total Sums of Squares
Overall Test for Interaction ANOVA table

SSAB = SSCells—SSA —SSB TSS = SSCells + SSE
= ”Zi@ Viw=Teje ¥ V)’ = SSA + SSB + SSAB + SSE
- ijo — Vies — Veje oo

i=1 i=1

H,: No interaction.

a b G? H,: Interaction exists. ANOVA Table
= 1Y 371?554 SSB——— .
=l j=l abn
Source df SS MS F
SSAB Between Cells ab-1 SSCells  MSCells  MSCELLS/MSE
el Factor A a-1 SSA MSA MSA/MSE
F (a—-1)(b—-1) MSAB Factor B|  b-1 SSB MSB MSB/MSE
- MSE - MSE Interaction | (a-1)(b-1) SSAB  MSAB MSAB/MSE
Error(Within Cells) | ab(n-1) SSE MSE
F> F(a—1)(b—1) ab(n-1),a Total (corrected) abn-1 TSS

Critical note: Replications per cell are necessary, otherwise SSAB not
estimable in two factor ANOVA

Effects are linear comparisons Effects are linear comparisons
i X3 i ?Xz
A o
a e %
X, effect X, effect X, effect XX, effect XX, effect XX, effect

R IR IERITTS,
DSSRORRRR

KK
8

Ya¥:)

e

e
K
RGN

:
>
SO
£33
0.0
<5

XX
9%
3%
5
55

X3

,.
5

355

3K
X
V0000




An example of a two way ANOVA

Objectives of the experiment. Investigate the
effect of different insertions of gene A on yield

effect of different insertions of gene B on yield

possible interaction between gene A and gene B

*Experimental factors: gene A and gene B
*Factor levels: 3 different insertions for gene A
2 different insertions for gene B

*Treatments:  all possible combinations of insertions of gene A with
insertions of gene B

*Replications: 3 plants were harvested per treatment
*Dependent variable:  yield
*Size of the experiment: 3*2*3=18 experimental units

An example of a two way ANOVA

SAS Program

SAS Output

An example of a two way ANOVA

Two way ANCWVA interaction plot

Rt TR T T RIZ

N-way ANOVA

Factorial experiment with N experimental factors: A,
B, C,D, ...

Completely randomised design
High order interactions
* AB, AC, AD, ... BC, BD, ...
* ABC, ABD, ...
« ABCD, ...

Generalisation is straightforward

13



What’s expected to be understood

* Multiple regression in Response Surface Methodology.
Dependent and independent variables are numeric. The
predicted response is studied.

* N-way ANOVA including multiple comparison tests.
Dependent variable is numeric, independent variables are
categorical or fixed numeric. Differences between
treatment level means are investigated for N experimental
factors, including possible interaction effects between
factors. Model parameters are investigated.

* In all approaches Completely Randomised Designs are

assumed.
What’s next?

Generalisation to more complicated experimental
designs: Randomised Block and Latin Squares Designs

14



