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Part I 

General introduction to design and 

analysis of mixtures 



What’s expected to be understood 

• Sampling strategy versus experimental design 

 

• What is experimentation. Basic principles and properties. 

 

• ‘Classical’ experimental design theory   

 

• Multiple regression in Response Surface Methodology. 
Dependent and independent variables are numeric. The 
predicted response is studied.  

 

• Specific designs for RSM 

 

• Randomised Complete Designs 

 

 

 

 



What’s next? 

Generalisation to constrained experimental regions 



Generalisation to optimisation in constrained 

experimental regions: What are mixtures? 



Generalisation to optimisation in constrained 

experimental regions: What are mixtures? 



Generalisation to optimisation in constrained 

experimental regions 

Design and analysis of mixture systems 

Definition 

In the general mixture problem, the response that is 

measured is only a function of the proportions of the 

ingredients present in the mixture and not of the amount of 

the mixture.  

For a mixture system consisting of q components, with xi the 

fraction of the i-th component the following equations are 

valid : 

0 ≤ xi ≤ 1  for i = 1, 2, 3, ..., q 

 
x 1i

i 1

q








Design and analysis of mixture systems 

The q components of a mixture system are called 

“mixture variables”.  The proportion of each mixture 

variable can vary from 0 (the component is not present) 

to 1, a mixture with only one component, called a ‘pure 

mixture’.  If in a q component mixture the proportion of q-

1 mixture variables is determined, then the proportion of 

the qth mixture variable is also determined: 

x 1 xq i
i 1

q 1

 




 One exact multicollinearity constraint 



Design and analysis of mixture systems 

In this way the mixture equations reduce the q dimensional 

factor space to a q-1 dimensional simplex.  
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x1 

x2 

x1 = 1 x2 = 1 

(1,0) (0,1) 

(1,0) 

(0,1) (0,0) 

 

(0,0,1) 

(0,1,0) 

(1,0,0) 

x2 

x1 

x1 = 1 

(1,0,0) 

(0,1,0) 

x2 = 1 

(0,0,1) 

x3 = 1 

 Simplex factorspace for a 3 component mixture 

x3 



Design and analysis of mixture systems 

In this way the mixture equations reduce the q dimensional 

factor space to a q-1 dimensional simplex.  

 

x1  (1,0,0,0) 

x4 

(1,0,0,0) 

x3  (0,0,1,0) 

x2 

(0,1,0,0) 

 Simplex factorspace for a 4 component mixture 



Design and analysis of mixture systems 

As a result of the mixture constraints classical orthogonal 

experimental designs can not be used.  Confounding between 

mixture components is inherent to the mixture problem 

Specific designs are developed 

Specific ‘mixture models’ are fitted with Response Surface 

Methodology.   

Emphasis on predicted response estimation. 

 



Design and analysis of mixture systems 

Some examples of mixtures 

Food sciences: dough mixes, chocolate, ice cream, wine blending, fruit 

juices, fish paties, … 

Chemical industry: gasoline blending, textile fiber blends, explosives, ... 

Ceramics industry 

Pharmaceutical industry 

Agriculture: nutrient solutions, fertilizers, fodder, multiple cropping, … 

Medical sciences:  media for in vitro culture, … 

Consumer sciences: organoleptic attributes, … 

 



Design and analysis of mixture systems 

Two possibilities to take in account the mixture constraints 

1. Transform the q mixture components to q-1 independent, 

orthogonal factors. In this way the mixture problem is 

reduced to classical experimentation with orthogonal 

factors 

 

2. Incorporate the mixture constraints into the models. This 

leads to specific ‘mixture’ models 

 

Taking care of the mixture 

constraints 



Design and analysis of mixture systems 

Transform the q mixture components to q-1 orthogonal factors.  

Taking care of the mixture 

constraints 
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Orthogonal transformation matrix 

 Rotate with svd$v (PCA) 

 Translate to centroid 

 Center and scale 



Design and analysis of mixture systems 

Transforming the q mixture components to q-1 orthogonal factors 

is carried out by translation and rotation of the original axes 

system.  

The use of mathematically independent variables has the major 

advantage of classical design and response surface fitting, the 

interpretation of the obtained coefficients is quite difficult, due to 

the fact that the independent variables are linear combinations of 

the mixture variables and have no practical meaning.    

Specially for interpreting interactions between transformed 

variables, interpretation in the original mixture components is 

impossible. 

Multiple mixtures, mixtures with additional constraints: 

multicollinearity problems persist 

 

Taking care of the mixture 

constraints 



Design and analysis of mixture systems 

Taking care of the mixture 

constraints 

Incorporate the mixture constraints into the models. This leads 

to specific ‘mixture’ models 

RSM first and second order models are  adapted to the mixture  

situation leading to Scheffe canonical mixture models 

x 1i
i 1

q
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Design and analysis of mixture systems 

Mixture models 

Scheffe canonical mixture models 

kk xxxy   ...2211

  First order mixture model 

Second order mixture model 

kkkkkk xxxxxxy 1)1(211211 ......  

Other mixture models 

 Cox models 

 Models with inverse terms 

 Adaptation of know theoretical models 



Mixture experimental design 

• Whole simplex experiments 

o Experiments over the full mixture space 

 

• Homomorphic experimental regions 

o Experimental region has the same shape as the overall simplex 

 

• Complex constrained experimental regions 

o Irregular convex hyper-polyhedron 



Design and analysis of mixture systems 

Specific mixture designs over the 

whole simplex 

{q,m} Simplex Lattice Design is a design to fit a m-th order 

mixture model in q components 

 

In this design each of the q mixture component varies with m+1     

equally spaced values from 0 to 1 

  xi = 0, 1/m, 2/m, ..., 1  

 q m 1

m

q m 1 !

m! (q 1)!

 







 

 



This design has the following number of treatments 



Design and analysis of mixture systems 

Specific mixture designs over the 

whole simplex 

{q,m} Simplex Lattice Design 

 

{3,3} simplex lattice design 

(0,1/2,0,1/2) 

(1/2,0,1/2,0) 

(0,0,1/2,
1/2) 

(1/2,
1/2,0,0) (1/2,0,0,1/2) 

(0,1/2,
1/2,0) 

x4 = 1 

x3 = 1 

x2 = 1 

x1 = 1 

x3 = 1 x2 = 1 

x1 = 1 

{4,2} simplex lattice design 

   {q,m} simplex lattice design 



Design and analysis of mixture systems 

Specific mixture designs over the 

whole simplex 

A Simplex Centroid  Design consists of 2q - 1 treatments: 

 

q pure components:    q permutations of (1,0,0,0,...,0) 

 

       binary mixtures with equal proportions:  permutations of (1/2,
1/2,0,0,...,0) 

 

       ternary mixtures with equal proportions:  permutations of (1/3,
1/3,

1/3,0,...,0) 

... 

one q-nary mixture with equal proportions:  the mixture (1/q,1/q,1/q,1/q,...,1/q)  

 

   










2

q










3

q



Design and analysis of mixture systems 

Specific mixture designs over the 

whole simplex 

A Simplex Centroid  Design   
 

3 component simplex centroid design 

(1/2,0,1/2,0) 

(1/3,0,1/3,
1/3) 

(0,0,1/2,
1/2) 

(1/2,0,0,1/2) (
1
/2,

1
/2,0,0) 

(0,1/2,
1/2,0) 

x2 = 1 x4 = 1 

x3 = 1 

x1 = 1 

x3 = 1 x2 = 1 

x1 = 1 

   Simplex centroid designs 

4 component simplex  

centroid design 
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1
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(1/4,
1/4,

1/4,
1/4) 

(1/3,
1/3,

1/3,0) 

(1/3,
1/3,0,1/3) 



Design and analysis of mixture systems 

An example of a whole simple mixture experiment 

Fruitiness flavor of a fruit punch optimised in relation to proportions 

orange juice, pineapple juice and grapefruit juice (simplex centroid 

design, 10 replications per treatment blend) 



Design and analysis of mixture systems 

Single component constraints 

Imposing a certain lower (li) and/or upper (ui) bound on the proportion 

of the mixture variables, reduces the factor space to a sub-region of 

the (q - 1) - dimensional simplex, defined by the following equations: 

0 ≤ li ≤ xi ≤ ui ≤ 1   

with li and ui respectively the lower and upper bound imposed on the 

component xi.   

Additional constrains Physiological 

Economical 

Chemical 

Physical 

Production of explosives 



Design and analysis of mixture systems 

 

Single component constraints: 

0.10  x1  0.40  

0.25  x2  0.50  

0.20  x3  0.60  

x2 = 1 x3 = 1 

 Subregion of a 3 component mixture 

x1 = 1 

Additional constrains 



Design and analysis of mixture systems 

Additional constrains 

Multiple component constraints 

 

Multiple component or multiple variable constraints are linear 

constraints of the form: 

 
aj  c1j x1 + c2j x2 + ... + cqj xq  bj  



Design and analysis of mixture systems 

Additional constrains 

 

Multiple component constraint: 

2.3  x1 + 3 x2 + 4 x3  3 

x1 = 1 

x2 = 1 x3 = 1 
 Subregion of a 3 component mixture 



Design and analysis of mixture systems 

Additional constrains: single and multiple 

 

Complex constrained factor space: 

0.10  x1  0.40  

0.25  x2  0.50  

0.20  x3  0.60  

2.3  x1 + 3 x2 + 4 x3  3  

x1 = 1 

x2 = 1 x3 = 1 

 Subregion of a 3 component mixture 

How to design an 

optimal experimental 

design in these 

experimental regions 



Design and analysis of mixture systems 

Additional constrains: the experimental design problem 

Two situations occur 

 

1. The experimental region is homomorphic with the whole 

simplex 

 

2. The experimental region is a convex,  irregular hyper-

polyhedron 



Design and analysis of mixture systems 

Additional constrains: the experimental design problem 

The experimental region is homomorphic with the simplex  

x1 = 0.35 

x3 = 0.20 
x2 = 0.15 

x3
’
 = 1 x2

’
 = 1 

x1 = 1 

x1
’
 = 1 

x3 = 1 x2 = 1 

   Transformation to L-pseudocomponents 

Transformation  of xi to 

pseudocomponents xi’ 

Projecting the experimental 

region on the whole simplex 

Whole simplex methodology 

can be used 

xi
xi li

l i
i

q
' 







1

1



Whole simplex experiments in raw mixture components or 

pseudocomponents: an example 

 

• Most ‘optimal’ approaches for design and analysis of mixture 

experiments 

• Straigthforward design and analysis, even for complex 

problems 

• Examples 

o Multigrain crackers 



Multigrain crackers 

Objectives 

o Develop a multiple grain cracker where a proportion p  of the wheat 

flower is replaced with buckwheat, oats, barley and rye 

o Optimising the flour composition of a multiple grain cracker in relation 

to consumer preference, scored by magnitude estimation 

 



Multigrain crackers 

Defining constraints of the experimental region 

o All components of the dough mixture are constant except 
flour 

o Proportion p of the wheat flour can be replaced by 
buckwheat, oats, barley and/or rye 
• 1-p  Pwheat  1 

•  0  Pbuckwheat  p 

• 0  Poats  p 

• 0  Pbarley  p 

• 0  Prye  p 

o Homomorphic experimental region with 5 components 

o Pseudocomponents transformation to whole simplex 

o {5,2} simplex lattice is proposed 

 

 



Multigrain crackers 

Mixture Wheat Buckwheat Oats Barley Rye 

1 1 0 0 0 0 

2 0 1 0 0 0 

3 0 0 1 0 0 

4 0 0 0 1 0 

5 0 0 0 0 1 

6 0.5 0.5 0 0 0 

7 0.5 0 0.5 0 0 

8 0.5 0 0 0.5 0 

9 0.5 0 0 0 0.5 

10 0 0.5 0.5 0 0 

11 0 0.5 0 0.5 0 

12 0 0.5 0 0 0.5 

13 0 0 0.5 0.5 0 

14 0 0 0.5 0 0.5 

15 0 0 0 0.5 0.5 

 {5,2} simplex lattice design in pseudocomponents 



Multigrain crackers 

Full model:  quadratic Scheffé canonical polynomial 

o 5 linear terms 

o 10 cross product terms 

 Pref.   = 10000wheat + 01000buckwheat + 00100oats + 00010barley + 

00001rye + 11000wheat*buckwheat + 10100wheat*oats + 

10010wheat*barley + 10001wheat*rye + 01100buckwheat*oats + 

01010buckwheat*barley + 01001buckwheat*rye + 00110oats*barley + 

00101oats*rye + 00011barley*rye  

 



Multigrain crackers 

Model reduction based on all possible models and maximum 

R2  

 

pref. = 66.62 wheat + 76.51 buckwheat + 62.41 

oats + 40.99 barley + 32.81 rye – 129.39 

wheat*buckwheat  

 

R2 = 0.98  CV=6 % 
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 Figure 5: Adjusted preference of the Belgian experts for 3 wheat and buckwheat levels



Multigrain crackers 

Conclusions 

o Replacing the wheat flour partially with buckwheat and oats had a 

positive effect on the consumers preference   

o A antagonistic interaction between wheat and buckwheat persists   

o  Rye and barley addition resulted in low preference 



Design and analysis of mixture systems 

Additional constrains: the experimental design problem 

The experimental region is an irregular hyper-polyhedron 

Flare manufacturing experiment 



Design and analysis of mixture systems 

Additional constrains: the experimental design problem 

The experimental region is an irregular hyper-polyhedron 

A specific optimal experimental design 

has to be developed for each 

individual case 

 

Computer Aided Design of 

Experiments is necessary (CADEX) 

 

Extremely computational intensive in 

high dimensionality 



Additional constrains: the experimental design problem 

The experimental region is an irregular hyper-polyhedron 

CADEX approach 

Construction of a list of candidate treatments 

 Extreme vertices and centroids of all the lower dimensional boundary 

hyperplanes, planes and edges of the convex, irregular hyper-

polyhedron 

 

 For some models equidistant grids can be used as candidate list 

 

Assuming a model form 

 

Defining an optimal design criterion  

 D-optimality 

 G-optimality 

 

Optimisation algorithm  

 Extremely computational intensive exchange algorithms 

 

Run the optimisation for different numbers of treatments 

 

 

  

  



Additional constrains: the experimental design problem 

The experimental region is an irregular hyper-polyhedron 

CADEX approach (continued) 

Choose a design with optimal properties 

 

Implement possible randomisation schemes 

 

Carry out the experiment and do the measurements 

 

Fit the model by classical least squares (GLM) 

 

Interpretation 

 

 

  

  

 

 



Additional constrains: the experimental design problem 

The experimental region is an irregular hyper-polyhedron 

Calculation of the candidate list 
 

 

  

  

 

 

 

Complex constrained factor space: 

0.10  x1  0.40  

0.25  x2  0.50  

0.20  x3  0.60  

2.3  x1 + 3 x2 + 4 x3  3  

x1 = 1 

x2 = 1 x3 = 1 

 Subregion of a 3 component mixture 

Vertices 

Plane centroidvertices 

Edge centroid 



The method of least squares 

The polynomial models can be formulated in matrix notation: 

  Y=X +  

 Where Y is an nx1 vector of observations on the independent 
variable, X equals an nxp matrix of known factor levels for each 
individual component, including cross-product and quadratic 
terms,  is a px1 vector of unknown parameters, n is the number 
of experimental units and  is an nx1 vector of random errors.  

In the case were the (X’X) matrix is not singular, the least squares 
estimation of the parameters b of  is given by: 

  b = (X’X)-1X’y 

The variance-covariance matrix of b is expressed in the following 
equation: 

  var(b) = 2 (X’X)-1  

with 2 the error variance.  The elements of the matrix (X’X)-1 are 
proportional to the variance and the covariances of the elements 
of b.   

The variance of the prediction in a specific point x is given by: 

  var(xb) = 2 x’(X’X)-1x 

 



Optimisation criteria for selecting optimal 

designs in constrained regions 

Comparing different experimental designs in their  precision 

to estimate  parameters in a RSM 

 

var(b) = 2 (X’X)-1 

 

 

Minimizing det{(X’X)-1}                   D-Optimality 

Comparing different experimental designs in their precision  

to  estimate predicted response in a RSM 

 

var(xb) = 2 x’(X’X)-1x 

 

Minimizing max{x’(X’X)-1x}           G-optimality 

Two situations occur: 



Design and analysis of mixture systems 

Process variables   

If a mixture experiment consists besides of the mixture components out of 

other factors, not bound by the mixture constraint, these are called 

“process variables”.  Changing the process variables may effect the 

blending properties of the mixture components.   

The experimental region of a mixture experiment with process variable(s) 

is the combined region of the mixture components and the process 

variable(s).   

The dimensionality of the combined experimental region equals the sum 

of the dimensionality of the separate experimental regions  



Design and analysis of mixture systems 

Process variables   

The 3 dimensional prism is the combined experimental region of the two-

dimensional simplex (x1, x2, x3) and the one-dimensional experiment in 

process variable z.    

x3 = 1 

x3 = 1 

x2 = 1 

x2 = 1 

x1 = 1 

  Combined region for a 3 component mixture (x1,x2,x3) and 

1 process variable (z) 

x1 = 1 

z = 1 

z = 2 



Design and analysis of mixture systems 

Multiple mixture systems  

A multiple mixture can be defined as a mixture of different other mixtures 

 

   Representation of a double mixture 



Design and analysis of mixture systems 

Multiple mixture systems  

Designs for sub-experiments are combined 

Specific adaptations of mixture models are necessary 

Process variables   



Composed liquid fertilizer as a constrained, double mixture 

amount 

 

 

Objectives 

 Optimize the composition of a composed liquid fertilizer in 

relation to plant response (Ca content of Rye grass) 



Composed liquid fertilizer as a constrained, double mixture 

amount 

Defining constraints 

  Aqueous solutions of  inorganic ions  

    K+ Ca2+ Mg2+ NO3
-  H2PO4

-   SO4
2- 

   with C = total concentration in units of charge (meq/l) 

Prepared by dissolving salts 

  fi KNO3, Ca(NO3)2, MgSO4, … 

Ionic balance constraint:  balance of charge 
[K+] + [Ca2+] + [Mg2+]  = [NO3

-] + [H2PO4-] + [SO4
2-] =C/2 

Double mixture constraints: multicomponent equality constraints 



Composed liquid fertilizer as a constrained double mixture 

amount 

 

4 

5 3 

1 

2 

Ca
2+

 = 1 

K
+
 = 1 

Mg
2+

 = 1 
Cation factorspace 

6 

 

5 

6 4 

2 3 

1 

NO3
-
 = 1 

H2PO4
-
 = 1 SO4

2-
 = 1 

Anion factorspace 

0.44  K+   0.79 

0.09   Ca2+   0.44 

0.12   Mg2+   0.47 

0.56   NO3
-   0.82 

0.09   H2PO4
-   0.35 

0.09   SO4
2-   0.35 

{3,2} Simplex Lattice 



Composed liquid fertilizer as a constrained, double mixture 

amount 

• Mixtures ({3,2} SimLat)  in the separate mixtures 
are transformed to pseudocomponents 

• Total concentration (C) is defined as a process 
variable 

• The mixture design is the combination of the two 
constituent mixtures (Cations, Anions), mixed with 
proportion 0.5  

• This design is repeated at the levels of the  process 
variable (C = total concentration or amount) 



Composed liquid fertilizer as a constrained, double mixture 

amount 

• Pseudocomponents transformations  

0.35

0.44K
k

+


0.35

0.09Ca
ca

2 




0.35

0.12Mg
mg

2 




0.26

0.56NO
n

-

3 

0.26

0.09POH
p

-

42 


0.26

0.09SO
s

-2

4 




An example of a double mixture with one process variable 
 

Total milli-equivalent 

concentration 

  

n = 0 

p = 0 

s = 0.5 

n = 0 

p = 0.5 

s = 0 

n = 0.5 

p = 0 

s = 0 

k 

mg ca 

12.5 mval/l 50 mval/l 

    Double mixture experiment with one process variable in two levels 

n = 0.5 

p = 0 

s = 0 

k 

mg ca 

n = 0 

p = 0 

s = 0.5 

n = 0 

p = 0.5 

s = 0 



Composed liquid fertilizer as a constrained, double mixture 

amount 

Number of treatment combinations 

o Cations x anions:  6 x 6 = 36 

o 2 levels in the process variable: 36 * 2 = 72 

o 5 replications per treatment:  360 exp units 

 

o Checkpoints? 

 



Composed liquid fertilizer as a constrained, double mixture 

amount 

 

Model formulation 

o The second degree double mixture model with process variable is 

obtained by combining the process variable model with a second 

degree double mixture model, resulting in a total of 72 terms 



f(x,z) =  b0
100100 kn + b0

100010 kp + b0
100001 ks + b0

100110 knp + b0
100101 kns + b0

100011 kps + 

b0
010100 can + b0

010010 cap + b0
010001 cas + b0

010110 canp + b0
010101 cans + b0

010011 caps + 

b0
001100 mgn + b0

001010 mgp + b0
001001 mgs + b0

001110 mgnp + b0
001101 mgns + b0

001011 mgps + 

b0
110100 kcan + b0

11001 kcap + b0110001 kcas + b0
110110 kcanp + b0

110101 kcans + b0
110011 

kcaps + b0
101100 kmgn + b0

101010 kmgp + b0
101001 kmgs + b0

101110 kmgnp + b0
101101 kmgns + 

b0
101011 kmgps + b0

011100 camgn + b0
011010 camgp + b0

011001 camgs + b0
011110 camgnp + 

b0
011101 camgns + b0

011011 camgps + b1
100100 knz + b1

100010 kpz + b1
100001 ksz + b1

100110 knpz + 

b1
100101 knsz + b1

100011 kpsz + b1
010100 canz + b1

010010 capz + b1
010001 casz + b1

010110 canpz + 

b1
010101 cansz + b1

010011 capsz + b1
001100 mgnz + b1

001010 mgpz + b1
001001 mgsz + b1

001110 

mgnpz + b1
001101 mgnsz + b1

001011 mgpsz + b1
110100 kcanz + b1

110010 kcapz + b1
110001 kcasz + 

b1
110110 kcanpz + b1

110101 kcansz + b1
110011 kcapsz + b1

101100 kmgnz + b1
101010 kmgpz + 

b1
101001 kmgsz + b1

101110 kmgnpz + b1
101101 kmgnsz + b1

101011 kmgpsz + b1
011100 camgnz + 

b1
011010 camgpz + b1

011001 camgsz + b1
011110 camgnpz + b1

011101 camgnsz + b1
011011 camgpsz 

 
 

 

With x: mixture variable 

 z: process variable 

 k, ca, mg, n, p and s: pseudocomponents in proportions 

   

Composed liquid fertilizer as a constrained, double mixture 

amount:  model formulation 

 

bz k ca mg n p s:  parameters 



Composed liquid fertilizer as a constrained, double mixture 

amount 

Reduced Model 25 terms: 

 calcium = 211.65 kn + 217.64 kp + 237.35 ks + 672.47 can  

                  + 657.87 cap + 700.02 cas + 245.40 cap  

                  + 176.66 mgn + 125.13 mgp + 123.59 mgs  

                  + 928.30 kcan + 542.34 kcap + 2437.85 kcans 

                  - 282.50 kmgs + 661.36 camgn + 716.75 camgp  

                  + 318.91 camgs +2418.63 camgns + 37.37 knz  

                  + 88.21 canz + 78.72 mgnz + 36.88 mgpz  

                  + 60.66 mgsz + 795.67 kcapz + 573.17 kcasz 

    

R2 = 0.99,  CV = 4.9  

 



An example of a double mixture with one process variable: 50 mval/l 

 

k = 0.25, ca = 0, mg = 0.25 k = 0.25, ca = 0.25, mg = 0 

k = 0, ca = 0.25, mg = 0.25 k = 0, ca = 0, mg = 0.5 k = 0, ca = 0.5, mg = 0 

               Calcium content (mmol/kg dry weight) of the ryegrass at 50 mval/l 

(anion factor space superimposed on the cation simplex) 

k = 0.5, ca = 0, mg = 0 
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An example of a double mixture with one process variable: 50 mval/l 
 

n = 0.25, p = 0, s = 0.25 n = 0.25, p = 0.25, s = 0 

n = 0, p = 0.25, s = 0.25 n = 0, p = 0, s = 0.5 n = 0, p = 0.5, s = 0 

              Calcium content (mmol/kg dry weight ) of the ryegrass at 50 mval/l 

(cation factor space superimposed on the anion simplex) 
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An example of a double mixture with one process variable: 12.5 mval/l 
 

k = 0.25, ca = 0, mg = 0.25 k = 0.25, ca = 0.25, mg = 0 

k = 0, ca = 0.25, mg = 0.25 k = 0, ca = 0, mg = 0.5 k = 0, ca = 0.5, mg = 0 

               Calcium content (mmol/kg dry weight) of the ryegrass at 12.5 mval/l 

(anion factor space superimposed on the cation simplex) 

k = 0.5, ca = 0, mg = 0 
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An example of a double mixture with one process variable: 12.5 mval/l 
 

n = 0.25, p = 0, s = 0.25 n = 0.25, p = 0.25, s = 0 

n = 0, p = 0.25, s = 0.25 n = 0, p = 0, s = 0.5 n = 0, p = 0.5, s = 0 

               Calcium content (mmol/kg dry weight ) of the ryegrass at 12.5 mval/l 

(cation factor space superimposed on the anion simplex) 

n = 0.5, p = 0, s = 0 
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Composed liquid fertilizer as a constrained, double mixture 

amount 

Conclusions 

o Ca in the fertilizer increases the Ca content in the Rye grass 

o Marked Ca*K antagonistic effect 

o Small Mg*Ca antagonistic effect 

o No cation – anion interactions 

o Total concentration has an additive effect, not interacting with 

composition 



Design and analysis of mixture systems 

Conclusions   

Experimental factors in constrained regions of interest are 

always confounded 

Experimentation in constrained experimental regions 

demands adapted strategies to develop optimal 

experimental designs and specific model forms 

Estimation of model parameters is straightforward RSM 

Multiple mixtures, process variables, additional constraints, 

... result in complicated designs and  models 

 


