KU LEUVEN

Model based approaches for the investigation of technical sustainability of agricultural production systems

Ethiopia March 2013

KU LEUVEN

Eddie Schrevens Biosystems Department Faculty of Applied Bioscience Engineering KU Leuven

Geo-Institute, Celestijnenlaan 200 E 3001 Heverlee, Belgium

tel: 32 (0) 16 322420 skype: ESchrevens E-mail:eddie.schrevens@biw.kuleuven.be www.agr.kuleuven.ac.be/dtp/TQM/tqm.htm

Ethiopia March 2013

Sustainability

World Commission of Environment and Development (UN-WCED, 1987), Brundtland Commission

'Meeting the needs of the present without compromising the ability of future generations to meet their own needs'

- Very philosophical definition
- How to implement in practice?

Sustainability

The Three Spheres of Sustainability

Technical sustainability

The ability of a Biological Production System (BPS) to make an efficient use of the available bio-physical resources with the main goal to maximize its economical output and minimize its environmental impact, given a set of uncontrolled biophysical constraints

Technical sustainability is related to overall resource-use efficiency

Efficiency can be described by output-input relations

Do more with less

A holistic or systems approach is necessary

Systems approach to Biological Production Systems (BPS)

A BPS is defined as a complex interplay of in- and outputs, managed by man and influenced by environmental-, political-, economical-, institutionaland social factors with as general objective to produce biomass and/or preserve the environment

- Production of 7f: food, feed, fiber, fuel, fertilizer, fine chemicals, flower
- Agro-ecological point of view: sustainable natural resource management

Technical sustainability focuses on the interplay of biophysical factors

Systems approach to BPS

Bio-physical operational framework for BPS research

- 1. Functional unit: kg produce or ha, farm
- 2. Basic processes: photosynthesis, respiration, nutrient and water uptake, transpiration, sink-source relations, ...
- 3. Constraints: climate, soil, water, land, genetics, ...
- 4. Unit operations: fertilization, irrigation, pest management, postharvest operations, ...

Unit operations are the building blocks of the BPS Unit operations integrate basic processes and constraints Unit operations can be described by the mass, energy and information flows they create

Systems approach to BPS

General objective

Development of generic methodologies for quantitative and holistic evaluation of technical sustainability of farming systems at field, farm and regional level

Research methodologies for technical sustainability (TS)

- Define an operational framework for farming systems research on the field and farm level, considering processes, constraints and unit operations as well as their interactions
- Conceptual analysis model ⇔ NO book of recipes
- Set mission of FSR
- Development of formal predictive models
- Develop optimal data acquisition methods
- Setup of optimal data base structure
- Characterize the error propagation of the methods by performing different types of uncertainty analysis

Data acquisition

- Inventory by sampling and experiment
 - Input-output accountancy (IOA)
- Inquiries by structured interviews
- Participatory research
- Verification of the information
- Corroboration of the information

Structured interviews

Universidad de Bogotá Jorge Tadeo Lozano Centro de Bio-Sistemas Multidisciplinary assessment of efficiency and sustainability of smallholder-based tomato production systems in Colombia, with a roadmap for change I-2010 Productores de Tomate - Campo Abierto

Longitude

Participatory research

Detailed follow-ups

		-	veers and every	Terreral		05		
				nio netetes	+ the first		-	
	12. Harris	a delibrations	SHORE C. MAS		Cieffy pie	eofacili.		
				SAU-	Celo	and the		
		Street Street		-Avelan M		S.S. Meseral		
						An incompany		04-225
			NO 2 Pagento	Carina chi per			-	
Alternative sector of the sect		Predatte	and the second second					- Barrow
								Prese and
				ETSE				

Input output accountancy

- Bio-physical input-output accountancy
 - 'Measure' all unit operations for the functional unit of the system on quantitative scales
 - Field level ⇔ crop production
 - Farm level ⇔ animal production
 - LCA-oriented approach, combined with structured interviews and participatory workshops
 - Quantitative description of representative farming systems
 - Integrate to farm, community and regional level

Data acquisition methodology

- Bio-physical input-output accountancy (IOA)
 - The unit-operations on pilot-plots are evaluated continuously through the crop season (planting to harvest).
 - Biophysical units: mass, energy
 - Biomass distribution over the growing season is measured through vegetation analysis on subplots (evaluation points).
 - Biomass of weeds (evaluated at weeding and before the harvest).
 - Commercial product, e.g. potato or barley grain.
 - Residual biomass that stays on the field, e.g. faba bean leaves.
 - Residual biomass removed for fodder, e.g. corn stalks.
 - Total harvested product per plot is registered and used to double-check the obtained yields from the evaluation points

The start

Evaluation points

Evaluation points

Image processing on evaluation points

Research methodologies for TS

• Static, time invariant methods

- Mass balances
- Exploratory multivariate data analysis
- Energy balances
- Life Cycle Assessment (LCA)
- Dynamic methods
 - Nonlinear mixed models
 - Crop models
 - Systems models
 - Crop growth and development models, linked to soil nutrient and water transport models and crop management to investigate the technical sustainability of fertilization strategies
 - Modelbased LCA

Research methodologies for TS

Static, time invariant methods

- Mass balances
- Exploratory multivariate data analysis
- Energy balances
- Life Cycle Assessment (LCA)
- Dynamic methods
 - Nonlinear mixed models
 - Crop models
 - Systems models
 - Crop growth and development models, linked to soil nutrient and water transport models and crop management to investigate the technical sustainability of fertilization strategies
 - Modelbased LCA

Mantaro valley, Peru

- 77 cropping cycles recorded, 2004 to 2008
- Most planted crop was potato, barley, corn, beans, associations

KU LEUVEN

35% of the cycles included crop associations

• Barley production in Aramachay, Mantaro Valley, Peru

• Barley production in Aramachay, Mantaro Valley, Peru

Four fertilization types (pannels) Nil: no fertilization Organic Inorganic Mixed

FWWeedsHaKg: weeds biomass production, remaining on the field (kg ha-1)

FWResHaKgFi: residual biomass production, remaining on the field (kg ha-1)

FWResHaKgAn: residual biomass, exported as animal fodder (kg ha-1)

FWProdHaKg: grain production (kg ha-1)

Corn-bean association rotations in the Mantaro Valley, Peru

Evolution of yields, residues, straw and weeds in the continuous association of corn+faba bean in Colpar and Molinos.

FWWeedsHaKg: weeds biomass production, remaining on the field (kg ha-1)

FWResHaKgFi: residual biomass production, remaining on the field (kg ha-1)

FWResHaKgAn: residual biomass, exported as animal fodder (kg ha-1)

FWProdHaKg: harvest production (kg ha-1)

• Corn-bean association rotations in the Mantaro Valley, Peru

Statistical approaches Exploratory multivariate analysis PCA Biplots

Peri-urban horticulture, Colombia

 Most planted crops were spinach (45%), radish (17%), lettuce (14%) and coriander (14%)

KU LEUVEN

Experimental area between 208 and 12560 m²

Energy balances (IOA)

	Unit	Coriander	Lettuce	Radish	Spinach
Input sources					
Labour	h ha ⁻¹				
Sowing/planting		9.7±69.4	27.4±3.8	8.0±35.0	10.4±34.1
Irrigation		28.7±21.5	39.9±39.4	15.9±12.6	29.2±20.3
Fertilization		34.4±26.5	98.09±17.7	13.3±24.4	31.7±25.3
Spraying		45.9±35.6	45.6±29.1	14.9±16.6	43.9±18.9
Weeding		207.7	397.9±238.4	238.8±51.9	449.3±268.7
Harvesting		336.9±359.9	309.7±213.1	286.1±338.9	496.9±268.4
Fertilizers	kg ha ⁻¹				
Ν		71.3±74.2	33.3±61.0	18.6±30.8	48.9±55.5
P_2O_5		44.3±43.7	8.5±14.7	30.9±30.8	32.9±48.9
K ₂ O		40.9±45.1	8.5±14.7	30.9±42.4	32.9±49.8
Organic		820.7±1675.4	20.3±47.4	4582.3±11467.4	7.5±17.3
Plant material					
Seeds	kg ha ⁻¹	37.2±14.6	-	5.2±6.3	8.7±3.2
Plantlets	units ha-1	-	43335.1±17986.1	-	-
Pesticides (Active ingredient)	kg ha ⁻¹				
Fungicides		1.8±0.9	1.2±1.2	1.2±1.9	1.9±1.4
Insecticides		0.8±0.7	0.6±0.3	0.2±0.1	0.8 ± 0.7
Herbicides		1.3±0.8	0.8 ± 0.6	0.4 ± 0.1	0.8 ± 0.6
Machinery					
Diesel	1 ha ⁻¹	102.2±89.5	118.0±65.2	52.7±44.3	97.4±75.6
Tractor	h ha ⁻¹	5.6±5.6	9.4±10.8	4.6±5.9	6.9±7.9
Irrigation pump	h ha ⁻¹	22.4±22.5	34.9±38.4	9.5±12.9	24.1±21.6
Output					
Economic yield	t ha ⁻¹	7.6 ± 7.0	21.3 ± 6.5	4.1 ± 6.9	13.4 ± 4.4
Green residues	t ha-1	0.5 ± 0.8	20.0 ± 7.8	6.2 ± 5.5	5.7 ± 3.4
Others					
Cycles recorded	n	9	8	9	26
Cycle length	days	70 ± 13	85 ± 14	50 ± 14	71 ± 8
Planting density at harvest	plants m ⁻²	129.5 ± 60.6	5.1 ± 1.4	39.4 ± 29.8	27.6 ± 11.9

Energy source	Unit	Energy equivalent (MJ unit ⁻¹)	Reference
Human labour	h	1.96	Singh et al. (2002)
Diesel oil	1	45.4	Fluck (1992)
Fertilizers	kg		
N		60.6	Singh (2002)
P ₂ O ₅		11.1	Singh (2002)
K ₂ O		6.7	Singh (2002)
Organic	kg	0.3	Singh (2002)
Plant material			
Seeds	kg	1.0	Singh (2002)
Transport	kg	3.0	Calculated
Plantlets	unit	0.2	Calculated
Output	kg		
Coriander		0.95	USDA-ARS (2008)
Lettuce		0.58	USDA-ARS (2008)
Radish		0.66	USDA-ARS (2008)
Spinach		0.97	USDA-ARS (2008)

Energy equivalents of different inputs and outputs

Energy use efficiency = $\frac{\text{Energy output (MJ ha^{-1})}}{\text{Energy input (MJ ha^{-1})}}$

Net energy = Energy output (MJ ha⁻¹) – Energy input (MJ ha⁻¹)

0	Energy us	se efficiency	Net energy (MJ ha ⁻¹)			
Crop	With residues	Without residues	With residues	Without residues		
Coriander	0.62	0.59	-4508.3	-4852.5		
Lettuce	1.09	0.48	1786.1	-9726.2		
Radish	1.08	0.46	513.8	-3573.1		
Spinach	1.65	1.16	6999.7	1687.5		

KU LEUV<u>EN</u>

Life Cycle Assessment IOA over the full life cycle Environmental impact studies

Life cycle assessment

Life cycle assessment

- Cellular phone
 - Production of the phone
 - Materials and energy
 - Use of the phone
 - Electricity
 - Grid of antennas
 - Electronics
 - Recycling of the phone
 - Full process well understood
 - \circ Straightforward IOA \Leftrightarrow LCA
 - Limited variability
 - No spatial or temporal effects

Fertilization in crop production

- Production of fertilizer
 - NH₄NO₃
 - Well understood process
 - Straightforward IOA ⇔ LCA
- Application of fertilizer
 - Tractor, fertigation, manually
 - Understand all the underlying biological, physiological processes
 - N-uptake, Nitrification, Denitrification, Leaching, Immobilization, Mineralization
 - Interactions between climatesoil-crop-cultural techniques
- Large variability
- Spatial or temporal effects

Life Cycle Assessment

. . .

Production of fertilizer

Emissions of fuel incineration

 \odot

- . .
- Eg. Ecoinvent DB

$\overline{\otimes}$

- Application of fertilizer
- Nitrogen processes in crop and soil
- Leaching of nitrogen compounds
- Emissions of nitrogen compunds
 - **KU LEUVEN**

Life cycle assessment of fertilization

- Cauliflower field in Belgium
 - NH₄NO₃
 - Broadcast or fertigation
 - Low and high dosis
 - Industrial production of NH₄NO₃
 - Application of NH₄NO₃
 - Nitrogen cycle processes?

Inventory → impact assessment

- \sum (LCI * CFi) = impact
 - CFs Transformation coefficients from IOA to environmetal impact category
 - LCI: Life Cycle Inventory with IOA
- Example Global warming potenntial
 - All mass, energy, processes transformed to equivalent CO₂ emission
 - Total CO₂ emission transformed to gloabal Warming Potential (expressed in CO₂ eq)

'Basic' LCA (NH₄NO₃ industrial production)

Cumulative energy demand (MJ)

KU LEUVEN

Low

Emissions due to fertilizer application (empirical relations)

• Ammonia (Sutton *et al.* 2002):

 $NH_3-N = EF_{i,r} * N$ -fertilizer input

~ type *i* fertilizer & ~ climatological region r (~ mean spring T°)

= 1-2% ((C)AN) → 15-20% (urea)

• Nitrous oxide (IPCC (Intergovernmental Panel Climate Change), 2006):

 $N_2O-N = 1\% * N$ -fertilizer input

- + 1% * N-cropresidu (above and below ground)
- + 1% * N-mineralized (ΔC_{min} *(N/C), no immobilization)
- + 1% * (NH₃-N+ NO_x-N) (atmospheric deposition ~ 10-20% of all N-sources)

+ 0.75% * NO_3^-N (leaching/runoff ~ 30% of all N-sources)

• Nitric oxide

 NO_x -N = 0.7% * N-fertilizer input (Bouwman *et al.* 2002)

 NO_x -N = 21% * NO_2 -N (ecoinvent-report, pers. Comm. Grub '96)

Full LCA (Production + application of NH₄NO₃)

Empirical relations for fertilizer application impact

Emissions due to fertilizer applications

Empirical relations \Leftrightarrow Mechanistic models

We could improve the LCA by using system dynamic models, simulating all these N-processes in the soil

Research methodologies for TS

Static, time invariant methods

- Mass balances
- Exploratory multivariate data analysis
- Energy balances
- Life Cycle Assessment (LCA)
- Dynamic methods
 - Systems models
 - Crop growth and development models, linked to soil nutrient and water transport models and crop management to investigate the technical sustainability of fertilization strategies
 - Modelbased LCA
 - Nonlinear mixed models

Crop-soil-climate model

Soil transport model, WAVE

Generic crop model

Emissions due to fertilizer application

• Nitrate leaching (NO_{3}^{-})

~ N-balance:

+ N-input	- N-uptake
+ N-mineralization	- N-immobilization
+ N-fixation/deposition	- N-volatilisation
Σ	

- ~ Experimental data
- ~ Model calibration
- ~ N-process simulation

Experimental setup

Measuring nitrate leaching

Experimental setup

Modelling climate-soil-crop

- Empirical → mechanistic
 - Default IPCC ignores soil characteristics, climate conditions and agricultural practices other than N input rate
- Modelling subprocesses
 - Crop growth + soil dynamics + water transport
 - ~ climate
- Impact of rotation cauliflower AND leek within a year
 Eg. Nitrate leaching difficult to attribute to a single crop

Rotation Cauliflower-Leek-winter

N-rate is 3

Nitrogen content in different soil layeres

Days after 1st of January 2009

Model vs Data:2009-N-rate 3

---- Broad

Fertigation

Crop – soil – climate model

KU LEUVEN

Animation

Climate of the last 43 years

Simulated production

Cauliflower

Leek

Climate uncertainty over the last 43 years

Simulate cumulative N-leaching under doses 3, broadcast application

42.8 % exceed the 90 kg/ha leaching on 1 Nov

52.3 % exceed the 90 kg/ha leaching on 15 Nov

Model based LCA

- Examples
 - Rotation cauliflower leek
 - Nitrate leaching difficult to attribute to a single crop
 - Influence climate soil conditions
 - Sequential effects due to crop residu mineralisation
 - Incorporate simulated N-process results into the LCA framework
 - Cauliflower-Leek rotation
 - Multiple years → climate variability

Model based LCA (cauliflower – leek 2010)

Equipment (incl. fuel)

Fertilizer production

Fertilizer application

Model based LCA (cauliflower - leek 09 - 10)

Broadcast High dose

Broadcast Low dose

Fertigation High dose

Fertigation Low dose

Greenhouse tomato system, Colombia Non-linear mixed models

- •Crop planted all over the country
- •Tomato production area: 11304 ha
- •30% under protected conditions
- Yield: 5 6 kg plant⁻¹

Simple plastic greenhouses
Naturally ventilated
No active climate control is present
Planted under soil conditions
High wire training system

Greenhouse tomato systems

- Three locations Chia, Susa and Piedecuesta
- Greenhouses area between 320 and 1632 m²

Systems approaches Tomgro model calibrated for the Bogota savanna

Nonlinear mixed models with grouping structures or several dependent variables

Dataset: Greenhouse tomato production systems - Colombia

$$y_{ij} = (a + u_{i1}) \times \exp^{(-\exp^{c \times (d + u_i 2 - dat))}} + e_{ij}$$

Gompertz growth function

Observed yield

$$y_{ij} = (a + u_{i1}) \times \exp^{(-\exp^{c \times (d + u_{i2} - dat)})} + e_{ij}$$

Chia - Observed

Chia – Simulated (TOMGRO-model)

$$y_{ij} = (a + u_{i1}) \times \exp^{(-\exp^{c \times (d + u_{i2} - dat))}} + e_{ij}$$

$$y_{ij} = (a + u_{i1}) \times \exp^{(-\exp^{c \times (d - \operatorname{dat})})} + e_{ij}$$

Environmental Impact Assessment

U LEUVEN

Global warming potential GWP100 (kg CO2-eq) - FU: 1 kg tomatoes - Pesticides

Conclusions

- Model based investigation of technical sustainability
 - Many methodologies are possible
 - Very simple and straightforward to very complex
 - Mission of sustainability research?
 - Static, time invariant ⇔ dynamic
 - Statistical models <> system dynamical model

Thank you for your attention

