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Chapter 1

Basic concepts in statistical

research planning

1.1 Introduction

In this first chapter, we will make a walk through the different steps typically taken when
setting up an experiment. In that process, we will introduce important concepts in exper-
imental design.

An important first step, discussed in Section 1.2, is to clearly define a research hypothesis,
and translate it into a testable statistical hypothesis.
Next, the investigator has to think about the possible resources to run the experiment
and test the relevant hypothesis. The experimental material is split up in different parts,
and we discuss in Section 1.3 the concepts of experimental and observational units. We
assess the response variable at the level of an observational unit, whereas treatments are
randomly assigned to experimental units.
Another important step to consider is power analysis, i.e., assessing how many replica-
tions are required in the experiment in order to have a reasonable chance to reject the null
hypothesis. The concept of replication is explained in Section 1.4.
The next question in setting up an experiment is whether the units can be grouped in a
meaningful way, i.e., in blocks, so that part of the random variation between the experi-
mental units can be explained. The reasoning behind blocking is explained in Section 1.5.
Once experimental units have been determined and possibly grouped in blocks, we need
to assign treatments to experimental units in a random way. Randomisation is the corner-
stone of experimental design and will be thoroughly discussed in Section 1.6. Randomisa-
tion enables the scientist to claim causal relationships.
Randomisation takes away part of the subjectivity in an experiment. Nevertheless, once
the study is running, we must ensure that evaluation of the response variable is also done
in an objective way. Blinding (of the investigator) and double blinding (including the
subject) is discussed in Section 1.7. It is an excellent tool to ensure that no bias towards
a particular treatment occurs.
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1.2 Specifying statistical hypotheses

1.2.1 Scientific and statistical hypotheses

It is essential in experimental research to clearly define the hypothesis that needs to be
tested, so that an adequate experiment can be set up that leads to a firm conclusion with
respect to that hypothesis.
Once such an hypothesis is defined in scientific terms, we need to translate this in a statisti-
cal hypothesis (in terms of population parameters) that can be tested with an appropriate
statistical test. This step is often not straightforward but needs to be taken before the
start of the experiment to avoid useless experiments from which no conclusions can be
drawn. We study in the next section different types of hypothesis, and also demonstrate
that one and the same study can lead to different hypotheses.

Example 1.1 Mastitis trial and relevant hypothesis specifications

We want to investigate the effect of inoculation dose of Escherichia coli in the udder
quarter on the somatic cell count (SCC) in the milk of dairy cows. We randomly assign
5 heifers to the low dose (104 colony forming units) and 5 heifers to the high dose (106

colony forming units). We assess the SCC in intervals of 3 hours in the next 24 hours.
We wish to evaluate the effect of the inoculation dose on SCC. This is, however, not a
workable hypothesis, because it is much too general and it does not enable us to write
down a statistical hypothesis that can be tested. It is necessary to specify more precisely
what is expected in terms of SCC if inoculation dose matters. Here is a list of a few
possible hypotheses.

• We expect that the SCC over the 24 hours will be higher in the high dose group
relative to the low dose group; we could therefore compare the averages (equals the
area under the surface with equal time intervals) over the different measurements in
time.

• We expect that the maximum SCC will be higher in the high dose group relative to
the low dose group; we could therefore compare the maximum observed SCC over
the 24 hours.

• We expect that the SCC will increase faster in the high dose group relative to the
low dose group; we could therefore compare the (linear) increase in SCC in the two
groups.

• We expect that the SCC will increase faster in the high dose group relative to the
low dose group; as alternative for the previous hypothesis we could compare the time
required before the SCC passes a certain (absolute or relative) threshold value.

• Sometimes it is not known upfront when to expect differences; an alternative is then
to compare the two groups at each of the different time points. This is not efficient, as
we have to correct for the fact that different hypotheses are tested simultaneously,
and each individual hypothesis therefore needs to be tested at a more stringent
significance level.
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• In general, we can test in a global model whether there are any differences at all,
comparing averages, and next whether the inoculation dose and time are interacting,
i.e., whether SCC evolves differently in time according to the dose group.

It is obvious from this list of hypotheses that it is essential to define a clear hypothesis.
The more specific the hypothesis, the more likely it will result in a significant result, if the
alternative hypothesis is correct.

1.2.2 Types of hypotheses

Hypotheses concerning one parameter

Sometimes one wishes to test a hypothesis concerning one parameter. This parameter can
be any characteristic of the population, but often it is a population mean or a population
proportion. Other possible parameters are the slope of a linear regression line or the
variance.

Example 1.2

Without vaccination, 30% of the animals survives an infection with a protozoan parasite,
Theileria parva. In an experiment, we wish to prove that a particular vaccine protects
more than 30% of the vaccinated animals. With π the population proportion of survivors
in the population after vaccination, the hypothesis becomes

H0 : π = 0.3 versus Ha : π > 0.3

Example 1.3

The white blood cells (WBC) are essential in the immune system defense of a cow against
mastitis. The WBC should not only be present, but also active. Activity of WBC can
be assessed by chemiluminesence. We wish to assess whether the activity of the WBC
before infection has a positive influence on the evolution of mastitis. We investigate this
hypothesis by correlating the WBC activity before infection with the proportional milk
reduction measured 48 hours after infection. We wish to prove that milk production is less
reduced with increasing activity of the WBC. Define β as the proportional milk reduction
per unit increase activity of the WBC (in units chemiluminesence); the hypothesis then
corresponds to

H0 : β = 0 versus Ha : β < 0
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Example 1.4

We need to assess the reproducibility of a new technique to quantify SCC. We therefore
take a number of milk samples of the same cow at the same time and measure the SCC for
each individual sample. We further assume that the measurements are well described by
the normal distribution, and define the hypothesis in terms of the variance of the normal
distribution. We wish to prove that the variance is smaller than a specific value, for
instance σ2 = 100, from which follows the hypothesis

H0 : σ
2 = 100 versus Ha : σ2 < 100

Hypotheses concerning two parameters

In most experiments at least two treatments or populations are compared with one another.
As in the previous section, most hypotheses are concerned with population means or
proportions, but also the variances or the slopes of two populations can be compared with
one another.

Example 1.5

Most vaccination experiments consist of two groups, a control group and a vaccinated
group, and animals are randomly assigned to one of the two groups. One wishes to prove
that more animals are surviving in the vaccinated group, compared to the control group.
With πv the proportion survivors in the population of vaccinated animals and πc the
proportion survivors in the population of control animals, the hypothesis is stated as

H0 : πv − πc = 0 versus Ha : πv − πc > 0

If one wants to prove that proportion survivors in the population of vaccinated animals is
at least a certain percentage, e.g. 20%, above that of the population of control animals,
the hypothesis becomes

H0 : πv − πc = 0.2 versus Ha : πv − πc > 0.2

Example 1.6

In the previous example concerning the relationship between the activity of the WBC be-
fore the infection and the reduction in milk production 48 hours after the infection with E.

coli, measurements were taken both on heifers and multiparous cows. We wish to compare
the relationship between heifers and multiparous cows. With βh (βm) the proportional
milk reduction per unit increase activity of the WBC (in units chemiluminesence) in heifers
(multiparous cows), the hypothesis is stated as

H0 : βh − βm = 0 versus Ha : βh − βm 6= 0
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Example 1.7

We have to choose between two techniques to quantify SCC, the microscopic technique or
the automated Coulter Counter. For a number of milk samples of the same cow at the
same time, SCC is assessed using the two techniques. We assume that the measurements
are well described by a normal distribution, and we wish to test an hypothesis related
to the variability of the two technqiues. With σ2

m (σ2
c ) the variance of the microscopic

technique (Coulter Counter), the hypothesis becomes

H0 : σ
2
m = σ2

c versus Ha : σ2
m 6= σ2

c

Hypotheses concerning more than two parameters

There are often more than two treatments or populations included in an experiment.
We can discern between experiments with only one factor, for instance dose of a drug,
appearing at more than two levels and experiments with more than two factors, each at
two or more levels. We first discuss the situation of one factor appearing at more than
two levels.

One factor with more than two levels

In the case of one factor appearing at more than two levels, different relationships can exist
-and can be tested for- between the different levels. The most general alternative hypoth-
esis states that there is at least one pairwise difference amongst the different population
means, without specifying which specific pair that is. If the levels are doses of a drug, we
can test a slightly more specific hypothesis: we could test whether there exist differences
between the control and any of the applied doses; we then need to adapt the significance
level for each comparison as multiple comparisons are made. Different hypotheses will be
put forward in the example below.

Example 1.8

The effect of progesterone on the diapedesis of white blood cells from the blood to the milk
in the udder is investigated in an experimental setup, which consists of two compartments
separated by an artificial membrane. A fixed number of white blood cells is put in the
first compartment, whereas different concentrations of progesterone are established in the
other compartment. We measure the number of migrated white blood cells after a defined
amount of time. Apart from a control without progesterone, three different progesteron
concentrations are used. Define the population mean of the number of migrated cells as
µ0, µ1, µ2 and µ3 for control, first, second and third highest dose respectively.

The global null hypothesis is then
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H0 : µ0 = µ1 = µ2 = µ3

versus the alternative hypothesis

Ha : µi 6= µj for at least one pair (i, j) with i, j = 0, . . . , 3

Any difference (at the level of the population) between concentrations should therefore
lead to rejection of the null hypothesis. As this is a very general hypothesis, it is very well
possible that a real and important difference, for instance between the highest dose and
the control, is missed.

A more specific hypothesis consists of the comparison of each concentration with the
control, specified as

H0 : µ0 = µ1;µ0 = µ2;µ0 = µ3

versus the alternative hypothesis

Ha : µi 6= µ0 for at least one concentration i = 1, . . . , 3

but we could also test each of the three hypotheses individually. In that case we have to
correct for multiple comparisons as discussed before.
Finally, we could also decide to test whether there exists a linear relationship between the
concentration and the number of migrated cells.

More than one factor

In the case of two or more factors, we distinguish between the main effects of the factors
and the interaction effects between the factors. We should first test the interaction effect;
in the case of no interaction, the main effects can be tested (see Chapter 3).

Example 1.9

For the induction of mastitis, two different doses, low and high, are used as before. The do-
sis, at a low and high level, is the first factor. Furthermore, we include the same number of
heifers and multiparous cows in the experiment, and the parity, heifer versus multiparous
cow, is the second factor. Define µLH en µHH as the mean SCC of the population of
heifers with low (high) induction dose, and similarly µLM en µHM as the mean SCC of
the population of multiparous cows with low (high) induction dose.

We first define the hypotheses related to the main effects. For the induction dose the
hypothesis is

H0 :
µLH + µLM

2
=

µHH + µHM

2
versus Ha :

µLH + µLM

2
6= µHH + µHM

2
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We therefore test whether the induction dose has an effect, regardless the parity, or aver-
aged over the parity.

For parity the hypothesis is

H0 :
µLH + µHH

2
=

µLM + µHM

2
versus Ha :

µLH + µHH

2
6= µLM + µHM

2

We therefore test whether parity has an effect, regardless the induction dose, or averaged
over the induction doses.

The hypothesis concerning the interaction between the two factors is

H0 : µLH − µLM = µHH − µHM versus Ha : µLH − µLM 6= µHH − µHM

We therefore test whether the effect of parity is the same for the two induction doses. This
interaction hypothesis can be reformulated as

H0 : µLH − µHH = µLM − µHM versus Ha : µLH − µHH 6= µLM − µHM

and now we test whether the effect of the induction doses is the same for heifers and mul-
tiparous cows. Both hypothesis tests give exactly the same result due to the symmetry of
the two hypotheses.

We demonstrate cases of presence and absence of interaction in Figure 1.1.

Figure 1.1: Main effects and interactions in the mastitis experiment with parity and
induction dose as factors. The solid line is related to the multiparous cows, the dotted
line to heifers.
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In Figure 1.1.a there is no effect of dose and no effect of parity, in Figures 1.1.b and 1.1.c
there is only an effect of dose, respectively parity, in Figure 1.1.d there is an effect of dose
and of parity, but no interaction between the two factors, in Figure 1.1.e both factors
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have an effect and there is also interaction: there is a dose effect for heifers but not for
multiparous cows. Finally a case is presented in Figure 1.1.f with interaction between the
two factors in the absence of main effects.

1.3 Experimental and observational units

The experimental unit is an important concept in experimental design. It is the entity or
part of the experimental material to which a treatment is randomly assigned. In many
cases, the patient or the animal is the experimental unit, but it is not necessarily so.
On the other hand, the observational unit is the entity on which the response variable
is measured. Possibly, the experimental unit and the observational unit coincide. We
demonstrate these wo concepts in Example 1.10.

Example 1.10 Experimental and observational units

We want to compare the effect of two drugs against trypanosomosis, Berenil and Samorin.
The response variable corresponds to the increase in packed cell volume (PCV) observed
in an animal. In a first setup, one herd is selected, and within the herd cows are randomly
assigned to Berenil and Samorin. The cow is the experimental unit, and at the same time
the observational unit. If it is logistically too complex to assign the two drugs within a
farm to different cows, we can opt to select different herds, and randomly assign the herd
as a whole to Berenil and Samorin, i.e., each cow within a herd receives the same treatment
that is randomly assigned to the herd. In this setup, the herd is the experimental unit,
whereas the cow remains the observational unit.

In many experiments, there is only one type of experimental unit, as in the two setups in
Example 1.10. In more complex studies, however, random assignment can occur at two
different levels, leading to two different types of experimental units. Experiment units
of the first type are often grouped into an experimental unit of the second type, i.e.,
experimental units of the first type are nested in experimental units of the second type.
We demonstrate this concept of nesting in Example 1.11.

Example 1.11 Two types of experimental units in the same experiment

We extend the setup of Example 1.10 with an additional factor, the dose of the drug: we
wish to test the two drugs at a low and a high dose. The drugs Berenil and Samorin are
assigned to the herd as a whole, but within a herd cows are randomly assigned to the high
or the low dose. The cow remains the observational unit, but there are now two types
of experimental units. The experimental unit of the first type is the cow, to which the
dose is randomly assigned. The experimental unit of the first type, the cows, are nested
within the experimental units of the second type, i.e., the herd. The nesting concept is
used in experimental design in the following way. One type of experimental unit, say the
first type, is nested within another type of experimental unit, say the second type, if an
experimental unit of the second type consists of a number of experimental units of the first
type, which are different from the experimental units of the first type included in another
experimental unit of the second type. Applying this to our example, each herd consists
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of a number of cows, and these cows are necessarily different from the cows in another herd.

The concept of nesting will also be used later when considering a treatment factor that is
nested within another treatment factor, where it has exactly the same meaning as above.

1.4 Replication

1.4.1 Introduction

The objective of an experiment is to assess whether an observed treatment difference is
caused by a real difference between the treatments. In order to do so, we need to have an
idea of the variation that can be expected between such observed treatment differences
if there is no difference at all between the treatments. Therefore, it is essential that at
least two experimental units are randomly assigned to each of the treatments; this will
enable us to estimate the inherent variability. Assume, for instance, that one wants to
assess whether there is a difference between two diets, A and B, with respect to weight
gain. One randomly selected chicken receives diet A, another one diet B, resulting in
observations 1.8 kg and 2.0 kg respectively. The observed treatment difference thus is 0.2
kg. Having only these two observations, it is impossible to conclude that diets differ from
each other as the difference could be merely due to the difference between the two chickens.

Assume that 4 chickens are used instead, with two randomly assigned to diet A and two
to diet B, with the results given by 1.75 kg and 1.85 kg for diet A and 1.95 kg and 2.05
kg for diet B. The observed treatment difference equals 0.2 kg as before. We can now,
however, evaluate this difference against the variability of chickens that have received the
same treatment.

1.4.2 Replication versus repeated measurements

It is essential to distinguish between replications and repeated measures. When two treat-
ments are compared in a simple experiment, then a random assignment of the treatment
to an experimental unit results in a replication. If the experimental unit and the ob-
servational unit coincide, we have only replications and no repeated measurements. If,
however, different observations are scored on an experimental unit, separated either in
time or space, then the experimental unit consists of different observational units. These
observations on one and the same experimental unit are repeated measurements and not
replications. Such repeated measurements allow us to have a better assessment of the
response variable for the experimental unit (a mean is better than a single observation),
but do not provide us with information about the variability between experimental units
against which we have to test the treatment effects.

As these concepts of replication and repeated measurement are crucial in setting up ef-
ficient experiments, two different examples of repeated measures are provided here, with
repeated measurements either spread in time, as in Example 1.12, or spread in space, as
in Example 1.13.
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Example 1.12 Repeated measures in time

We want to investigate the effect of a vaccine against trypanosomosis. One randomly
selected cow receives the vaccine, another cow a control injection. Both cows are now
followed up daily for their PCV values. The observational unit is now a PCV measurement
for a cow at a particular moment in time. The experimental unit, however, is the cow. Thus
the PCV measurements within a cow are repeated measurements and not replications. No
matter how large the difference between the PCV values of the two cows, or no matter
how many repeated measurements are taken over time, we should never conclude from
such an experiment without replications that the vaccine has an effect.

Example 1.13 Repeated measures in space

A vaccination trial for mastitis is set up in two farms. In a first farm, 15 heifers are chosen
and vaccinated, whereas in a second farm, we randomly chose 15 multiparious cows and
also vaccinate these cows. Assume that we want to compare the effect of the vaccine
between heifers and multiparious cows. It is clear that no replications are available for this
factor. Parity has been randomly assigned to a farm; thus the farm is the experimental
unit. The cow is the observational unit, but the cows within the farm are repeated
measurements, not replications. For a particular farm, with 15 cows or observational units,
we can get a precise estimate of the vaccine effect, based on these repeated measurements.
The repeated measurements, however, can not be used to assess the variability between
the farms, i.e., the experimental units. If big differences are seen between the farms, this
can either be due to the difference between heifers and multiparous cows, but also be
due to the inherent differences between the two farms. In order to draw conclusions with
respect to the difference between heifers and multiparous cows, we need to have at least
two farms at each level of the parity factor. Alternatively, we could choose to have heifers
and multiparous cows within the same farm, which makes the farm a block factor, and
the cow at the same time the experimental and observational unit.

1.4.3 Sample size determination

Objectives of sample size determination

The objective of most experiments is to draw a clear conclusion based on the results
generated by the experiment. A clear conclusion follows when the null hypothesis can
be rejected. If the null hypothesis can not be rejected it does not mean that the null
hypothesis is true. Assuming that we compare two treatments, non-rejection of the null
hypothesis can be due to different reasons

1. the null hypothesis is correct.

2. bad luck, a result in accordance with the null hypothesis is observed, both sample
means are the same, whereas there is a difference between the population means.

3. we observe a large difference between the sample means of the treatments but the
sample size is too small (or the variance too big) to conclude that this difference is
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caused by more than chance alone.

For reason [1], the right conclusion is drawn. We can never exclude reason [2], but its
probability decreases with larger sample size or a larger difference between the population
means. We have control over reason [3], as we can chose our sample size, or number of
replications, in such a way that particular differences of interest between sample means
will lead to rejection of the null hypothesis. We need to chose a sample size in such a
way that we will reject the null hypothesis with high probability (typically 80 %) if the
difference between the population means, ∆, is equal to or more than a relevant difference.
For instance, we are not interested in showing that diet A leads to 10 grams more weight
gain than diet B, as this has no pratical relevance; it would be difficult anyway, requiring
lots of animals. But differences starting from, say, 200 grams could be practically relevant.

Parameters in sample size determination

The probability that the null hypothesis is rejected depends on a number of parameters

1. The type I error α.

2. The true difference under the alternative hypothesis, for the case of comparing two
population means ∆ = µ1 − µ2.

3. The variance between the experimental units σ2.

4. The sample size n.

We want this probability, presented by 1− β and called power, to be sufficiently large.
We wish to determine the optimal sample size for the experiment, not too small nor too
large. The type I error is usually fixed at 5 %. The objective of the experiment is usally to
accept a particular alternative hypothesis, from which follows the true difference between
population means under the alternative hypothesis ∆. The remaining parameter is σ2, for
which we have to propose a particular (set of) values based on previous experiments or
experience.

Sample size determination for the comparison of two population means

The hypothesis for the comparison of two population means, µ1 en µ2, assuming that the
underlying variable is normally distributed, is given by

H0 : µ1 − µ2 = µ0

We typically assume that the variances of both populations are known. We discern between
one-sided and two-sided alternative hypotheses.

One-sided alternative hypothesis

The one-sided alternative hypothesis (we only consider one of the two possibilities here)
is written as

Ha : µ1 − µ2 > µ0
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The relevant test statistic is the difference between the sample means X̄1 − X̄2, with
distribution under the null hypothesis

X̄1 − X̄2 ∼ N

(

µ0;
σ2
1

n1
+

σ2
2

n2

)

It follows that the decision rule for rejection of the null hypothesis at significance level α
is

Reject H0 if
X̄1 − X̄2 − µ0
√

σ2

1

n1
+

σ2

2

n2

≥ z1−α

where z1−α corresponds to that value of the standard normal distribution for which there
is a probability of 1− α to find a smaller value, i.e., P(Z < z1−α) = 1− α.

This rejection rule can be reworked in terms of the difference between the two sample
means

Reject H0 if X̄1 − X̄2 ≥ µ0 + z1−α ×

√

σ2
1

n1
+

σ2
2

n2
= Cu

The power can now be derived for a specific difference between the two population means
under the alternative hypothesis, µ1 − µ2 = ∆. It corresponds to the probablity that
X̄1 − X̄2 is located in the critical region described in (1.4.3) given that µ1 − µ2 = ∆.

The power for µ1 − µ2 = ∆ is thus given by

P



X̄1 − X̄2 ≥ µ0 + z1−α ×

√

σ2
1

n1
+

σ2
2

n2
| µ1 − µ2 = ∆



 (1.1)

which is demonstrated in Figure 1.2.
The curve on the left hand side in Figure 1.2 is the distribution of X̄1− X̄2 under the null
hypothesis; the critical region corresponds to all values larger than Cu. The area under
this distribution to the right of Cu, denoted by α, is the probability of falsely rejecting
the null hypothesis. The curve on the right hand side in Figure 1.2 is the distribution of
X̄1 − X̄2 under the alternative hypothesis µ1 − µ2 = ∆. The area under this curve to the
right of Cu corresponds to the probability that X̄1−X̄2 takes a value in the critical region,
and is thus the power.

In most cases, we have to determine the sample size to attain the proposed power. We
then have to rework (1.1). We denote the required power by 1− β. We then have

1− β = P



X̄1 − X̄2 ≥ µ0 + z1−α ×

√

σ2
1

n1
+

σ2
2

n2
| µ1 − µ2 = ∆





= P





(X̄1 − X̄2)
√

σ2

1

n1
+

σ2

2

n2

≥ z1−α +
µ0 −∆
√

σ2

1

n1
+

σ2

2

n2




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Figure 1.2: Power calculation for a one-sided hypothesis
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∆
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(1−β)

from which follows that

zβ = z1−α +
(µ0 −∆)
√

σ2

1

n1
+

σ2

2

n2

If we take equal sample size for the two populations, i.e., n1 = n2 = n, and equal variances
σ2
1 = σ2

2 = σ2 we have

n =
2 (zβ + zα)

2 σ2

(µ0 −∆)2

Two-sided alternative hypothesis

The two-sided alternative hypothesis is written as

Ha : µ1 − µ2 6= µ0

The rejection region can be derived in a similar fashion as before and is

Reject H0 if | X̄1 − X̄2 |≥ µ0 + z1−α/2 ×

√

σ2
1

n1
+

σ2
2

n2
(1.2)

The power can be derived, as before, for a specific difference between the two population
means under the alternative hypothesis, µ1 − µ2 = ∆. It corresponds to the probablity
that X̄1 − X̄2 is located in the critical region described in (1.2) given that µ1 − µ2 = ∆.

The power for µ1 − µ2 = ∆ is thus given by
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1− P



µ0 + zα/2 ×

√

σ2
1

n1
+

σ2
2

n2
≤ X̄1 − X̄2 ≤ µ0 + z1−α/2 ×

√

σ2
1

n1
+

σ2
2

n2
| µ1 − µ2 = ∆





(1.3)
which correponds to

P

(

X̄1 − X̄2 ≤ µ0 + zα/2 ×
√

σ2

1

n1
+

σ2

2

n2
| µ1 − µ2 = ∆

)

+

P

(

X̄1 − X̄2 ≥ µ0 + z1−α/2 ×
√

σ2

1

n1
+

σ2

2

n2
| µ1 − µ2 = ∆

)

as demonstrated in Figure 1.3.

Figure 1.3: Power calculation for a two-sided hypothesis
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The biggest difference is that the critical regions splits up in two different regions: on both
sides of the density function under the null hypothesis, an area under the curve equal to
α/2 is taken. This leads to lower power for the two-sided test for the same data set when
the alternative hypothesis is true. The area denoted by (1− β) in Figure 1.3 corresponds
to the probability that the observed test statistic X̄1− X̄2 is located in the critical region,
and is thus the power. There is a very small probability that the observed test statistic is
located in the critical region on the other side, left from the acceptance region, but that
probability is negligible and is not added in the power calculations.
As before, the power expression (1.3) can be rewitten in terms of the required sample size

n =
2
(

zβ + zα/2
)2

σ2

(µ0 −∆)2

Example 1.14 Power calculation for the comparison of two means
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We want to set up an experiment to compare the effect of two trypanocidal drugs on the
packed cell volume (PCV) of cows having trypanosomosis. We want to determine the
required number of animals so that there is a probability (power) equal to 90 % to detect
a significant difference at the 5% significance level if we assume that the real (population)
difference in PCV equals 2% and that the population variance for both groups is equal to
2.
As z0.1 = −1.28 and z0.025 = −1.96, we have for a two-sided hypothesis

n =
2 (−1.28− 1.96)2 2

(2)2
= 10.5

We will therefore use 11 animals per group.

For a one-sided hypothesis test we find

n =
2 (−1.28− 1.645)2 2

(2)2
= 8.56

requiring a sample size of 9 animals per group.

1.5 Blocking

Blocking is an important tool in experimental design. It allows the investigator to reduce
the variability against which the treatment effects need to be compared. We will explain
the principle of blocking in this short section.

We typically have inherent variability amongst the experimental units. Even if all the
experimental units would receive the same treatment, they would still differ with respect
to the observed value for the response variable (assuming for the time being that the
experimental unit coincides with the observational unit). This variability between the
experimental units with the same treatment is the inherent variability in the experiment.

Experimental units, however, can sometimes be grouped in a meaningfull way into blocks,
so that experimental units within a block share some characteristic(s) and are therefore
more alike compared to experimental units from another block. If random assignment of
the treatment factor is done in a proper way, it is possible to explain part of the variability
between the experimental units, thereby reducing the variability against which treatment
effects need to be compared. A proper random assignment of the treatment factor ensures
that different treatments appear in the same block; this means that treatment differences
can be assessed within a block of experimental units that resemble each other more. In the
simplest setting, the randomised complete block design (see Chapter 4), each treatment
occurs exactly once in each block. In Example 1.15 a somewhat more complex application
of blocks is discussed.

Example 1.15 Blocking
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We wish to study the effect of two doses of Berenil with respect to the recovery of cows
after a trypanosoma infection. Different herds are included in the study as we wish to
draw general conclusions. Cows within the same herd resemble each other more and are
also kept under the same management, so that herd can be considered to be a block factor.
Therefore, animals within a herd (block) are randomly assigned to low and high dose. If
the number of animals assigned to each of the treatments is the same and higher than 1,
as in this example, we have a generalised complete block design (see Chapter 4). The use
of blocks will enable us to filter out the variation between herds. We thus investigate the
effect of a low (L) and a high (H) dose and cows are evaluated for PCV one month after
the treatment which results in the data in Table 1.1.

Table 1.1: Difference in PCV (%) just before and one month after treatment with a high
or low dose of Berenil of cows with a trypanosoma infection

Herd 1 Herd 2 Herd 3

L H L H L H

0.9 7.4 2.3 6.6 3.4 8.8
2.0 6.8 2.7 7.1 2.7 8.3
2.0 7.1 1.3 6.2 2.9 7.9
2.2 6.7 1.6 7.8 3.0 8.2
2.0 7.9 2.1 7.2 3.4 8.1

1.6 Randomisation

1.6.1 The concept of simple randomisation

The concept of randomisation has been introduced by Fisher (1935). Simple randomisation
goes as follows. Assume we want to compare two treatments A and B in an experiment,
without taking into account any other factors. We will then randomly assign a treatment
to an experimental unit with a particular probability; often this probability of assignment
is the same for both treatments, and thus equal to 50 %, but we might diverge from
that if we would like to have relatively more observations on one treatment. In simple
randomisation, the previous random assignments should not have an effect on the current
random assignment. Therefore, each random assignment has exactly the same probability
if the two treatments have the same assignment probability. For instance, the following 3
treatment assignments to 5 experimental units

A A A A A
B B B B B
A B A B A
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have exactly the same probability of occurrence.

It is obvious that the two first sequences are useless if we want to compare the treatments
A and B; that is why we use restricted randomisation schemes explained in the next section.

The use of random assignment ensures that other variables that could have an impact on
the response variable are distributed randomly over the two treatment groups. Randomi-
sation is necessary if an experimenter wants to demonstrate a causal relationship between
a treatment factor and a response variable. If the treatment assignment would be cho-
sen by the investigator, there is a serious risk that the investigator, consciously or not,
assigns patients or subjects with particular characteristics to particular treatments. If a
significant difference is found, it is unclear whether this is due to the treatment or to the
subjective assignment of the treatment. This last phenomenon is called selection bias.

Alternatively, it can be said that the treatment factor is confounded with certain patient
characteristics. In extreme cases, it could be that an investigator assigns the patients with
a better prognosis to the new treatment to try to show that the new treatment is better
than the standard.

It is a well known fact that non-randomised trials lead to more significant results than
randomised trials in the same setting.

The same reasoning as above can be applied to observational studies, where risk factors
are not randomly assigned, but merely observed. At best, we can conclude that there
exists a significant association between the risk factor and the outcome variable, but not
that there is a causal relationship: the risk factor might be correlated with the real causal
factor.

1.6.2 Restricted randomisation

As stated in the previous section, we normally don’t use the simple randomisation scheme,
because it could lead to serious imbalances in sample size of the two treatment groups. For
instance, in a group of 4 patients, the probability of having 2 in each treatment group can
be derived from the binomial distribution. With nA the number of patients in treatment
group A, and assuming equal assignment probability to groups A and B, we have

P(nA = 2) =

(

4

2

)

(0.5)4 = 0.375 (1.4)

So on average five in the eight trials will have an imbalance in sample size.

In a restricted randomisation scheme, we force the numbers of patients to be equal in
the two groups. We can therefore no longer assign a treatment to each experimental unit
independently. We rather look at all possible sequences with equal sample size in the two
groups and chose one of the sequences randomly. For instance, for 4 experimental units
with 2 treatments, we have the following six possible treatment assignments
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A A B B
A B A B
A B B A
B B A A
B A B A
B A A B

and we chose one of these 6 sequences for the experiment. We have therefore reduced the
number of possible sequences substantially, compared to the simple randomisation scheme,
which has 16 possible sequences.

Restricted randomisation is also typically used in block designs. For instance, in a ran-
domised complete block design (see Chapter 4), we want each treatment to occur exactly
once in each block. For 4 treatment in blocks of size 4, for instance, there are in total 24
different possible sequences from which we have to chose.

1.6.3 Randomisation tests

The concept of randomisation also led to the first and most basic statistical tests, the
Fisher exact test just being one of the famous examples.

Whenever the randomisation scheme is known, a randomisation test can be derived in a
straightforward manner. The only requirement is to find an appropriate test statistic for
the problem at hand. We demonstrate the principles of the randomisation test in Example
1.16.

Example 1.16 Randomisation tests for insecticide resistance

Assume that we want to compare the resistance of Anopheles mosquitos that transmits
malaria against two insecticides A and B. We put 20 mosquitos in a recipient, to which
we add one of the two insecticides in a random manner. Next, we count the number of
survivors in each recipient. The more survivors, the more resistant the Anopheles moquito
is. For 6 recipients, 3 with insecticide A and 3 with insecticide B, the data are shown in
Table 1.2.

Table 1.2: Number of surviving mosquitos (out of 20) according to insecticide

Insecticide Number of surviving mosquitos

A 8 13 18
B 3 7 5

Assume we want to test the hypothesis

H0 : µA = µB versus Ha : µA > µB
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with µA (µB) the average number of mosquitos surviving out of 20 when using insecticide
A (B).

We will use the simplest summary statistic possible, i.e., the difference between the mean
number of surviving mosquitos in the two treatment groups, denoted by D. In the exper-
iment we observe d = 13− 5 = 8.

Whenever H0 is correct, i.e., there are no differences between the two insecticides, then
each permutation of the treatment assignment is equally likely. The idea behind it is
that the sequence of observations would have remained exactly the same, even if another
treatment assignment would have been used. In total, there are

(

6
3

)

= 20 different permu-
tation assignments, each with the same probability of occurrence according to the applied
randomisation scheme, i.e., we need 3 experimental units assigned to one treatment and 3
to the other. Therefore, also each difference d, linked to a particular permutation has the
same probability of occurrence under H0. All 20 permutations are shown in Table 1.3, with
corresponding difference d. Based on Table 1.3, we can construct the exact distribution
of D (Table 1.4).

Table 1.3: All 20 possible permutations of treatment assignment in the mosquito experi-
ment

Insecticide
Permutation A B d

1 3 5 7 8 13 18 -8.00
2 3 5 8 7 13 18 -7.33
3 3 5 13 7 8 18 -4.00
4 3 5 18 7 8 13 -0.67
5 3 7 8 5 13 18 -6.00
6 3 7 13 5 8 18 -2.67
7 3 7 18 5 8 13 0.67
8 3 8 13 5 7 18 -2.00
9 3 8 18 5 7 13 1.33
10 3 13 18 5 7 8 4.67
11 5 7 8 3 13 18 -4.67
12 5 7 13 3 8 18 -1.33
13 5 7 18 3 8 13 2.00
14 5 8 13 3 7 18 -0.67
15 5 8 18 3 7 13 2.67
16 5 13 18 3 8 7 6.00
17 7 8 13 3 5 18 0.67
18 7 8 18 3 5 13 4.00
19 7 13 18 3 5 8 7.33
20 8 13 18 3 5 7 8.00

The P-value is given by the probability that we observe a similar or more extreme result
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Table 1.4: Exact distribution for differences in mean number of mosquitos surviving when
treated with the two insecticides

d P(D=d)

-8 0.05
-7.33 0.05
-6 0.05

-4.67 0.05
-4 0.05

-2.67 0.05
-2 0.05

-1.33 0.05
-0.67 0.1
0.67 0.1
1.33 0.05
2 0.05

2.67 0.05
4 0.05

4.67 0.05
6 0.05

7.33 0.05
8 0.05

than in the experiment, given that the null hypothesis is true, i.e., D is distributed as
in Table 1.4. The P-value is thus given by P(D ≥ 8) = 0.05. When testing at the 5 %
significance level, we can just reject the null hypothesis.
Consider now the same experiment, but assume that it runs over 3 days. At each day, two
recipients are taken and one is randomly assigned to insecticide A, the other to B leading
to the data in Table 1.5.

Table 1.5: Number of surviving mosquitos (out of 20) according to insecticide and day

Number of surviving mosquitos
Insecticide Day 1 Day 2 Day 3

A 8 13 18
B 3 7 5

The randomisation scheme has now changed, and fewer randomisation schemes are pos-
sible now, namely 8. We will use the same statistic, but the possible permutations with
corresponding difference now leads to Table 1.6
It is clear that each value d for D appears only for one permutation, so that each unique
value of D has the same probability equal to 0.125. Therefore, the P-value is given by
P(D ≥ 8) = 0.125 and we can no longer reject the null hypothesis.
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Table 1.6: All 8 possible permutations of treatment assignment in mosquito experiment

Insecticide
Permutation A B d

1 8 13 18 3 5 7 8.00
2 3 13 18 5 7 8 4.67
3 7 8 18 3 5 13 4.00
4 5 8 13 3 7 18 -0.67
5 3 7 18 5 8 13 0.67
6 3 5 13 7 8 18 -4.00
7 5 7 8 3 13 18 -4.67
8 3 5 7 8 13 18 -8.00

1.6.4 And after randomisation?

After having randomised subjects to a particular treatment, it is important to ensure that
no other factors in the course of the experiment are confounded with the treatment factor.
This is probably one of the most frequently made errors. From randomisation up to the
observation of the outcome, we have to avoid that biases are appearing in the treatment
assessment. We consider two examples below where the assessment of the treatment was
biased due to decisions taken after randomisation.

Example 1.17 Grouping experimental units with the same treatment together

Assume that we want to study the water uptake of chickens after vaccination. Ten chickens
are randomly assigned to the vaccine, whereas 10 other chickens are injected with distilled
water (sham control). As the vaccine is experimental and is based on an attenuated
virus, the investigator decided to keep all the vaccinated chickens in one stable, and the
control chickens in another stable. Although each chicken is housed individually to record
the water uptake of the chicken, the vaccinated chickens all share the same environment,
which is different from the control chickens. Therefore, the stable effect is fully confounded
with the treatment effect. Observed differences between the two groups of chickens could
be due to the treatment but also due to the stable.

Example 1.18 Assessing yield according to treatment

Three different wheat varieties are investigated for their yield. A randomised complete
block designs is set up in the field. In each of the three blocks, there are three plots; one
variety is randomly assigned to one of the plots within the block. At the time of harvest,
it is impossible to harvest all plots at the same day. To avoid confusion, the investigator
decides to first harvest variety A, on the next day variety B and finally on the third day
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variety C. It is obvious that variety C had one or two extra growth days, so observed
differences could be due to the longer growth period if it is found that variety C is best.

A correct approach is to use the block also as harvesting day. That way, the block factor
contains extra variation, i.e., the variation due to harvesting at different days.

1.7 Blinding

Some outcomes, such as death, can be assessed in an unambiguous way. Other outcomes,
however, have a more subjective nature. Consider, for instance, the wellfare of farm
animals, where the investigator has to give a score according to the general appearance of
the animal. Such a score is based on the subjective assessment of the observer. For such
outcomes, it is important to blind the investigator to the treatment of the animal or the
intervention that took place. Optimally, the person giving the treatment differs from the
person assessing the outcome, and the last one is not aware of the treatment.
Obviously, such blinding is only possible if the applied treatment cannot be observed by
the assessor. In human medicine, the golden standard is the double blind study, in which
both the medical doctor and the patient are blinded for the assigned treatment. Placebo
effects can be substantial in clinical trials, and the only correct way around this placebo
effect is blinding. In cancer clinical trials, blinding is very well possible when comparing
two different chemotherapies, but cannot be done when one wants to compare, for instance,
surgery with chemotherapy.



Chapter 2

Fixed effects model with one

factor - one way ANOVA

2.1 Introduction

In this chapter we discuss models which include only 1 factor, appearing at different levels.
We investigate factors with at least 3 different levels; t-tests can be applied when only two
levels are present.
When only fixed effect factors are considered, it is assumed that the effects of the partic-
ular levels are constant and of interest by themselves. These models are therefore named
fixed effects models.

The fixed effects model is constructed in Section 2.2. In Section 2.3 estimators for the
model parameters are proposed. Section 2.4 deals with testing of general hypotheses, i.e.,
are all factor effects equal or not? Section 2.5 deals with more specific hypotheses, using
pairwise comparisons, contrasts and lineair combinations. Finally, diagnostic tools for
investigating particular ANOVA model assumptions are discussed in Section 2.6.

2.2 Model specification for the fixed effects model with one

factor

We introduce the model specification of the fixed effects model with 1 factor using the
following example.

Example 2.1 Weight gain in 4 breeds of chicken

In an experiment, 4 breeds of chicken are compared with respect to their weight gain over
8 weeks. The experiment is based on 5 chickens per breed. The weights (in kg) are shown
in Table 2.1.

24
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Table 2.1: Weight gain of 5 chickens of 4 different breeds over 8 weeks.

Breed 1 Breed 2 Breed 3 Breed 4

1.56 1.38 1.49 1.46
1.54 1.41 1.54 1.49
1.50 1.44 1.48 1.44
1.49 1.37 1.51 1.52
1.51 1.40 1.48 1.49

The respons variable, weight gain, for the jth (j = 1, . . . , 5) chicken of the ith (i = 1, . . . , 4)
breed is modeled as

Yij = µi + eij (2.1)

where µi is the population mean of the ith breed and eij is the deviation of the observation
from its population mean. A further assumption for the eij ’s is that they are mutually
independent and normally distributed N(0,σ2).
This model is named the cell means model because the model parameters correspond to
the population means.
The number of levels of the factor is denoted by a, and the number of observations of the
ith level by ni. The total number of observations is

n. =
a
∑

i=1

ni

Given the definition of the cell means model above, a number of model characteristics
follow:

• The observed value Yij is the sum of 2 components: a constant term µi and a random
error term eij .

• As E(eij)=0, it follows that E(Yij) = µi (for the meaning of the operator E(.), see
note 2.1).

• As µi is a constant, it follows that Var(Yij) = Var(eij) = σ2. All observations have
the same variance regardless the factor level.

• As eij is normally distributed, it follows that Yij is normally distributed, as Yij is a
lineair combination of eij (see note 2.2).

• The random error terms eij are assumed to be mutually independent. Therefore, the
value of one random error term does not influence the value of another random error
term. As the eij ’s are mutually independent, it follows that the Yij ’s are mutually
independent.

• From the above model characteristics, it follows that the Yij ’s are mutually indepen-
dent with distribution N(µi, σ

2).
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The model for Example 2.1 is represented graphically in Figure 2.1. We depict the popu-
lation means (generally not known) corresponding to µ1 = 1.53, µ2 = 1.39, µ3 = 1.50 and
µ4 = 1.47 in Figure 2.1 and use the standard deviation of the population σ equal to 0.028.

1.30 1.35 1.40 1.45 1.50 1.55 1.60

µ2 =1.39
µ4 =1.47

µ3 =1.50
µ1 =1.53

Figure 2.1: Representation of the cell means model for the fixed effects model with 1
factor. The 4 population means equal µ1 = 1.53, µ2 = 1.39, µ3 = 1.50 and µ4 = 1.47. The
populations are characterized by a normal distribution with different population means
but the same standard deviation σ = 0.028.

An alternative for the cell means model is the factor effects model. This alternative model
representation is a somewhat more complex way to describe the same data. In the re-
mainder, however, the factor effects model is the preferred model. In more complex data
structures, it is far easier to define the hypotheses of interest in the factor effects model
compared to the cell means model. The factor effects model is therefore introduced in the
simple context of the fixed effects model with 1 factor.

The factor effects model is given by

Yij = µ+ αi + eij (2.2)

where

µ a constant, common for all observations
αi a constant, the effect of the ith factor level
eij the random error term, independent and N(0,σ2)

We name this model the factor effects model because it is expressed in terms of the effects
of the factor levels. These models are more complex because they are overparameterised;
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it means that the model contains too many parameters compared to the information that
needs to be described. This can be easily seen by comparing the factor effects model with
the cell means model. In the latter model, each factor level leads to one parameter, the
population mean. Therefore, the cell means model contains a parameters. In the factor
effects model, we have the general population mean µ, and on top a parameter for each
factor level leading to a + 1 parameters. The factor effects model thus has 1 parameter
too much. Due to this reason, parameter restrictions need to be added to the model spec-
ification; otherwise the meaning of the parameters is unclear and not unique. Although
many different types of restrictions can be used and are actually used in practice, we will
consider only one restriction type, as it leads to the most straightforward parameter in-
terpretation.

The following parameter restriction is used: put the sum of all factor effects equal to zero,
or

a
∑

i=1

αi = 0 (2.3)

from which it follows that the general population mean µ corresponds to the mean of the
different population means

µ =
a
∑

i=1

µi

a

as

a
∑

i=1

µi = aµ+
a
∑

i=1

αi = aµ

2.3 Estimating the model parameters of the fixed effects

model with 1 factor

The traditional way to estimate the population means in the cell means model is based
on the least squares (LS) criterion.

We first introduce some new notation.

The sum of the observations of the ith level of the factor is denoted as Yi., i.e.,

Yi. =

ni
∑

j=1

Yij

The sample mean for the ith level of the factor is denoted as Ȳi., i.e.,

Ȳi. =

ni
∑

j=1
Yij

ni
=

Yi.
ni
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The sum of all the observations is denoted as Y.., i.e.,

Y.. =
a
∑

i=1

ni
∑

j=1

Yij

which leads to the overall sample mean Ȳ.., i.e.,

Ȳ.. =

a
∑

i=1

ni
∑

j=1
Yij

n.
=

Y..
n.

The LS estimator of µi can then be obtained by minimising the LS criterion

Q =

a
∑

i=1

ni
∑

j=1

(Yij − µi)
2

This criterion can be minimised by taking the first partial derivative

dQ

dµi
=

ni
∑

j=1

(−2) (Yij − µi)

and equating to zero (where now µi is replaced by its estimator µ̂i)

2

ni
∑

j=1

(Yij − µ̂i) = 0

leading to

µ̂i = Ȳi.

The LS estimator of the population mean thus equals the sample mean from that popu-
lation.

In a similar way, and applying the restriction (2.3), we find for the factor effects model

µ̂ = Ȳ..
α̂i = Ȳi. − Ȳ.. for i = 1, . . . , a

2.4 The general hypothesis test

To test the general hypothesis of no differences between the different factor levels, we make
use of sums of squares, more specifically of a ratio of sums of squares. We first introduce
these sums of squares.

The starting point is the deviation of the observation from the overall mean, Yij − Ȳ...
This deviation can be written as the sum of two terms

Yij − Ȳ.. =
(

Ȳi. − Ȳ..
)

+
(

Yij − Ȳi.
)

(2.4)
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where the first term in the rhs of (2.4) corresponds to the deviation of the estimated ith

sample mean from the overall mean, and the second term is to the deviation of the obser-
vation from its estimated sample mean, which corresponds to the residual term êij .

If both sides of (2.4) are squared and summed over all observations, we obtain

a
∑

i=1

ni
∑

j=1

(

Yij − Ȳ..
)2

=

a
∑

i=1

ni

(

Ȳi. − Ȳ..
)2

+

a
∑

i=1

ni
∑

j=1

(

Yij − Ȳi.
)2

(2.5)

Remark that the crossproduct in (2.5) equals zero. Indeed

a
∑

i=1

ni
∑

j=1

(

Ȳi. − Ȳ..
) (

Yij − Ȳi.
)

=
a
∑

i=1

ni
∑

j=1

Ȳi.Yij −
a
∑

i=1

ni
∑

j=1

Ȳi.Ȳi. −
a
∑

i=1

ni
∑

j=1

Yij Ȳ.. +
a
∑

i=1

ni
∑

j=1

Ȳ..Ȳi.

=
a
∑

i=1

Ȳi.Yi. −
a
∑

i=1

niȲi.Ȳi. −
a
∑

i=1

Yi.Ȳ.. +
a
∑

i=1

niȲ..Ȳi.

=
a
∑

i=1

niȲi.Ȳi. −
a
∑

i=1

niȲi.Ȳi. −
a
∑

i=1

niȲi.Ȳ.. +
a
∑

i=1

niȲ..Ȳi. = 0

The lhs in (2.5) measures the total variability of the observations, and is therefore called
the total sums of squares, SStot,

SStot =
a
∑

i=1

ni
∑

j=1

(

Yij − Ȳ..
)2

(2.6)

The first term of the rhs in (2.5) measures the separation between the different sample
means. If all the sample means are exactly the same, this term equals zero. This term
therefore contains information about the observed differences between the different levels
of the factor. As the levels of the factor often correspond to different treatments, this sum
of squares is called the treatment sum of squares, SStrt,

SStrt =
a
∑

i=1

ni

(

Ȳi. − Ȳ..
)2

(2.7)

The second term of the rhs in (2.5) measures the spread of the observations around their
estimated sample mean. If all observations within a factor level are the same, this term
is zero. This term contains information about the random variation of the observations
around their sample mean. This sum of squares is called the sum of squares of the error,
SSerr,

SSerr =
a
∑

i=1

ni
∑

j=1

(

Yij − Ȳi.
)2

(2.8)

In hypothesis testing, we are not using these sums of squares, but rather the mean sums
of squares. The mean sum of squares is obtained by dividing the sum of squares by the
number of independent terms in the sum of squares, also called the degrees of freedom of
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the sum of squares.

SStot consists of n. terms, but only n.−1 are independent. Indeed, we have that
a
∑

i=1

ni
∑

j=1

(

Yij − Ȳ..
)

=

0 and one term can thus be written as a function of the other terms.

The mean total sum of squares is then

MStot =
SStot
n. − 1

SStrt consists of a terms, with only a− 1 independent terms as
a
∑

i=1
ni

(

Ȳi. − Ȳ..
)

= 0. The

mean treatment sum of squares is thus

MStrt =
SStrt
a− 1

SSerr consist of n. terms, but within each level i of the factor we have that
ni
∑

j=1

(

Yij − Ȳi.
)

=

0. Therefore, there are a terms that can be written as a function of the other terms, leading
to n. − a degrees of freedom for this sum of squares and the mean error sum of squares is
therefore given by

MSerr =
SSerr
n. − a

The reason why mean sums of squares rather than sums of squares are used, can be un-
derstood by studying the expected value of the mean sums of squares.

The expected values of MSerr and MStrt are given by (see Note 2.3):

E(MSerr) = σ2

E(MStrt) = σ2 +

a
∑

i=1
ni(µi − µ.)

2

a− 1
(2.9)

where µ. =

a∑

i=1

niµi

n.
.

Therefore, MSerr is an unbiased estimator for σ2, regardless whether treatment differences
exist.

On the other hand, when all population means are equal, and thus also equal to µ., it
follows that E(MStrt) = σ2 as the second term of the rhs of (2.9) equals zero. Whenever
the population means differ from each other, the second term of the rhs of (2.9) will make
a positive contribution to MStrt, and thus E(MStrt) > σ2.

Under the null hypothesis that all population means are equal, i.e.,
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H0 : µ1 = µ2 = . . . = µa

the expectations of MStrt and MSerr are equal to each other and we expect for the ratio

F ∗ =
MStrt
MSerr

a value equal to 1.

Under the alternative hypothesis

Ha : Not all µi equal

the expected value of MStrt will be larger than MSerr and we expect a value larger than 1
for the ratio F ∗.

Under the null hypothesis, the ratio F ∗ has a F-distribution with (a − 1) and (n. − a)
degrees of freedom

F ∗ ∼ F[a− 1, n. − a]

We will mainly use the P-value to take the decision to reject the null hypothesis. The
P-value corresponds to the probability of observing the same or a more extreme result
as in the experiment, given that the null hypothesis is true. Under the null hypothesis,
the ratio F ∗ is F-distributed, and more extreme results contradicting the null hypothesis
correspond to higher values for the F ∗ statistic than the one observed, f∗. The P-value is
therefore given by

P(F[a− 1, n. − a] ≥ f∗)

with f∗ the actual value for the F ∗ statistic. The null hypothesis is rejected when the
P-value is smaller than the significance level α.

The cumulatieve F-distribution, from which the P-value can be read, is given in Table 9.3.

We often present the SS, degrees of freedom, MS, F-statistics and P-values in an analysis
of variance or ANOVA (’ANalysis Of VAriance’) table, as demonstrated in Example 2.2

Example 2.2 Analysis of variance for weight gain in chickens of 4 different
breeds

The sample means of the 4 different breeds equal ȳ1. = 1.52, ȳ2. = 1.40, ȳ3. = 1.50 and
ȳ4. = 1.48. The ANOVA table is presented in Table 2.2.
The P-value equals P(F[3,16]≥ 17.29)= 0.000028, and is much smaller than the default
significance level of 5%. We can reject the null hypothesis that the 4 breeds are equal. A
graphical representation of the P-value is given in Figure 2.2 as the area under the density
function F[3,16] to the right of the value 17.29.
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Table 2.2: ANOVA table for weight gain of 5 chickens of 4 different breeds after 8 weeks.

Term SS df MS f∗ P(F≥ f∗)

Breeds 0.0415 3 0.0138 17.29 0.000028
Error 0.0128 16 0.0008
Total 0.0543 19 0.0029

0 5 10 15 20

f

0.
0

0.
2

0.
4

0.
6

f(
f)

17.29

P-value

Figure 2.2: Representation of the P-value as the area under the density function F[3,16]
to the right of the value 17.29.

2.5 Specific comparisons

If the general null hypothesis described in the previous section is rejected, we would like to
know which treatments differ from one another. Three different types of comparisons are
investigated in this section, the pairwise comparison, the contrast and the linear combina-
tion. The lineair combination is the most general comparison; the two other comparisons
can be described in terms of a linear combination.

2.5.1 Pairwise comparison

Two levels of a factor are often compared by defining hypotheses based on the difference
between the population means of the two levels

∆ = µi − µj

Such a comparison is called a pairwise comparison. An unbiased estimator is given by



CHAPTER 2. FIXED EFFECTSMODELWITHONE FACTOR - ONEWAYANOVA33

∆̂ = Ȳi. − Ȳj.

This estimator is unbiased as E(∆̂) = µi − µj .

Due to the independence between Ȳi. and Ȳj. we have

Var
(

∆̂
)

= Var
(

Ȳi.
)

+Var
(

Ȳj.
)

= σ2

(

1

ni
+

1

nj

)

The estimated variance of ∆̂ is obtained by replacing σ2 with its unbiased esimator

S2
(

∆̂
)

= MSerr

(

1

ni
+

1

nj

)

Because ∆̂ is a linear combination of independent normally distributed random variables,
it follows that

∆̂−∆
√

Var
(

∆̂
)

∼ N(0, 1)

If Var
(

∆̂
)

in this expression is replaced by its estimator S2
(

∆̂
)

, we also have to replace

the standard normal distribution by the T -distribution with n. − a degrees of freedom

∆̂−∆

S
(

∆̂
) ∼ T [n. − a]

It follows that the (1-α)100% confidence interval is given by

∆̂± T [1− α/2, n. − a]S
{

∆̂
}

Testing whether the population means of the levels differ is based on the following set of
hypotheses

H0 : µi − µj = 0

and

Ha : µi − µj 6= 0

To test this hypothesis we use the following test statistic

T ∗ =
∆̂− 0

S
(

∆̂
)
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which is distributed as T [n.−a] under the null hypothesis. The P-value for this two-sided
hypothesis is thus given by

2× P(T [n. − a] ≥| t∗ |)
If the P-value is smaller than the significance level α the null hypothesis is rejected.

Example 2.3 Pairwise comparison between two chicken breeds

We compare the first with the second breed. The first breed has a sample mean equal to
1.52, the second sample mean equals 1.40. From Example 2.2 we find that MSerr=0.0008.

It follows that s2
(

∆̂
)

= 0.00032. The 95% confidence interval for the difference between

breeds 1 and 2 is therefore given by

(1.52− 1.40)± 2.120
√
0.00032 and thus [0.082; 0.158].

The P-value equals

2× P

(

T [16] ≥ 1.52− 1.40√
0.00032

)

= 2× P (T [16] ≥ 6.708)

and this P-value is smaller than 0.002 (see Table 9.2). The null hypothesis is rejected.

2.5.2 Contrasts

A contrast is a comparison related to two or more levels of the factor. We write a contrast
as L; a contrast is defined as a linear combination of population means of the different
levels of the factor, µi, with the coefficients ci summing to zero:

L =

a
∑

i=1

ciµi with

a
∑

i=1

ci = 0 (2.10)

The pairwise comparison is thus a special case of a contrast with one population mean
having the coefficient 1 and the other the coefficient -1, all other coefficients being equal
to 0.

An unbiased estimator of L is given by

L̂ =

a
∑

i=1

ciȲi.

Due to the independence of the Ȳi.’s it follows that
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Var
(

L̂
)

=
a
∑

i=1

c2iVar
(

Ȳi.
)

=
a
∑

i=1

c2i

(

σ2

ni

)

= σ2
a
∑

i=1

c2i
ni

The estimated variance of L̂ is obtained by replacing σ2 with its unbiased estimator

S2
(

L̂
)

= MSerr

a
∑

i=1

c2i
ni

As L̂ is a linear combination of independent normally distributed variables it follows that

L̂− L

Var
(

L̂
) ∼ N(0, 1)

If Var
(

L̂
)

in this expression is replaced by its estimator S2
(

L̂
)

, we also have to replace

the standard normal distribution by the T -distribution with n. − a degrees of freedom

L̂− L

S
(

L̂
) ∼ T [n. − a]

It follows that the (1-α)100% confidence interval is given by

L̂± T [1− α/2, n. − a]S
(

L̂
)

Testing whether the population means of the levels differ is based on the following set of
hypotheses

H0 : L = 0

and

Ha : L 6= 0

To test this hypothesis we use the following test statistic

T ∗ =
L̂

S
(

L̂
)

which is distributed as T [n.−a] under the null hypothesis. The P-value for this two-sided
hypothesis is thus given by
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2× P(T [n. − a] ≥| t∗ |)
If the P-value is smaller than the significance level α the null hypothesis is rejected.

Example 2.4 Contrast between four chicken breeds

We compare the mean of the first and the second breed with the mean of the third and
the fourth breed. We choose as coefficients c1 = 0.5, c2 = 0.5, c3 = −0.5 and c4 = −0.5.
This is indeed a contrast as the sum of the coefficients ci equals zero.
The hypotheses for this contrast are written as

H0 :
µ1 + µ2

2
=

µ3 + µ4

2

and

Ha :
µ1 + µ2

2
6= µ3 + µ4

2

The estimate of this contrast equals -0.03; the estimated standard deviation of the contrast
equals s = 0.01265.

The P-value is thus

2× P

(

T [16] >| −0.03

0.01265
|
)

= 2× P (T [16] > 2.37)

and this P-value is between 0.02 and 0.05 (see Table 9.2). The null hypothesis is rejected
at a significance level of 5%.

2.5.3 Linear combinations

In some cases, interest is in a linear combination of two or more levels of a factor that
is not a contrast. We write a linear combination also as L, but without the restriction
∑a

i=1 ci = 0. Exactly the same techniques as in the previous section on contrasts can be
used to find confidence intervals or P-values.

2.5.4 Multiple comparisons

In the previous sections, we described how different hypotheses could be tested using linear
combinations, contrasts and pairwise differences. If only 1 hypothesis is tested, the signif-
icance level α is respected, i.e., on average only 100 α% of the experiments will lead to a
significant result, although the null hypothesis is true (type I error). However, if we test
different hypotheses, all at a significance level α, the probability of at least one significant
result will increase with increasing number of hypotheses tested, and the type I error will
be (much) larger than α. This problem occurs when testing multiple comparisons. It is
therefore required to test each hypothesis at a significance level αg, in order to ensure that
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the type I error for the joint set of hypotheses does not exceed the global significance level
α: the comparisonwise significance level αg needs to be chosen so that the probability
that one or more comparisons are significant at the αg significance level does not exceed
α under the null hypothesis.

Different techniques have been developed depending on the comparisons of interest. The
Tukey method is typically used when all pairwise comparisons are of interest. The Dun-
nett method is most efficient if one wants to compare all treatments with a control group.
If Scheffé’s method is used, one is allowed to construct any set of comparisons.

We only describe one technique in this section, namely the Bonferroni technique, because
it is the simplest technique and most generally applicable. If the global significance level
should not exceed α, and if one is interested in g hypotheses, then each single hypothesis
must be tested at a significance level equal to αg = α/g. We can calculate the P-value
of a specific comparison as before, but the P-value needs to be smaller than αg before a
significant difference can be claimed.

Example 2.5 Three pairwise comparisons between vier chicken breeds

We compare the first breed with the three other breeds; we therefore have three com-
parisons, that need to be tested at a significance level of 0.05/3=0.0167 according to the
Bonferroni technique. As an example we demonstrate how we can compare the first and
second breed. We can still use the P-value from Example 2.3; the P-value was smaller than
0.002. The P-value is therefore also smaller than 0.0167 and we can claim a significant
difference between breed 1 and breed 2.

2.6 Diagnostic tests for the fixed effects model with 1 factor

Analysis of variance is based on a number of assumptions regarding the data. It is good
statistical practice to evaluate to what degree the model assumptions are supported by
the data. We discern graphical techniques, based to a large extent on residuals, on the
one hand and more formal tests on the other hand. We will first define below different
types of residual values, that will be useful to evaluate different model assumptions. In
the next sections, we investigate how the homogeneity of the variance, the normality and
the independence of the observations can be evaluated. Finally, we describe how outliers
can be found in a dataset.

2.6.1 Residual values

De residual values for the ANOVA model

Yij = µi + ǫij

are obtained by replacing µi with its estimator Ȳi. from which follows

eij = Yij − Ȳi.
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Such residual values are often standardised. The semistudentized residual e∗ij is obtained
as

e∗ij =
eij√
MSerr

We call e∗ij the semistudentized residual because it is not based on the correct estimation
of the variance of eij .

The studentized residual is given by

rij =
eij

s (eij)

where

s (eij) =

√

MSerr
ni − 1

ni

In calculating the previous types of residual values, the observation itself is also used to
estimate the parameters. If the effect of a specific observation needs to be known, it is
more obvious to remove the observation when estimating the required parameters. The
deleted residual for the jth observation is obtained as

dij = Yij − Ȳi(−j) (2.11)

where Ȳi(−j) represents the ith sample mean without making use of the jth observation.

The studentized deleted residual is then given by

tij = eij

√

√

√

√

n. − a− 1

SSerr

(

1− 1
ni

)

− e2ij

Example 2.6 Different types of residual values for the weight gain of 4 chicken
breeds

Figure 2.3 shows 4 different types of residual values as a functon of breed. We will use
this figure in the remainder to test the different model assumptions.

2.6.2 Homogeneity of the variance

In the ANOVA model we assume that the observations for each level of the factor are
characterized by the same variance σ2. A visual control of this assumption is based on a
plot of the residual values at each level of the factor. This way, it can be assessed whether
the spread of the observations for each level of the factor is similar (see Figuur 2.3).

There exist also formal tests, such as the Hartley test, which can be applied as follows.
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Figure 2.3: Four types of residual values as a function of the level of the factor breed,
where eij is the residual value, rij the studentized residual, dij the deleted residual and
tij the deleted studentized residual.

The null hypothesis

H0 : σ
2
1 = σ2

2 = . . . = σ2
a

is tested relative to the alternative hypothesis

Ha : not all σ2
i equal

The test statistic is based on the largest and smallest sample variance

H∗ =
max(s2i )

min(s2i )

with values close to 1 supporting the null hypothesis. The cumulatieve distribution of H∗

under de null hypothesis is presented in Table 9.4. The distribution of H∗ depends on
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the number of levels of the factor a and the degrees of freedom available to estimate the
sample variance of one population, df = ni − 1, where we assume that alle samples have
the same size.
The decision rule for a significance level α is given by

If H∗ ≤ H[1− α; a; df ], decide H0

If H∗ > H[1− α; a; df ], decide Ha

where H[1 − α; a; df ] corresponds to the (1 − α)100 percentile of the distribution of H∗

under the null hypothesis.

Example 2.7 Homogeneity of the variance for the weight gain of 4 chicken
breeds

We first use the first plot of residual values in Figure 2.3. It seems that the spread of
the residual values is similar for each breed. To execute the Hartley test, we first need to
derive the sample variances of each of the breeds, with results s21 = 0.00085, s22 = 0.00075,
s23 = 0.00065 and s24 = 0.00095. The test statistic is thus

H∗ =
max(s2i )

min(s2i )
=

0.00095

0.00065
= 1.461

This test statistic needs to be evaluated in Table 9.4 in column a = 4 and row df = 4.
The critical value corresponds to 20.6. The test statistic is much smaller than the critical
value; we can not reject the null hypothesis of homogeneity of variances.

2.6.3 Normality of the observations

Another model assumption is that the residual terms eij are distributed normally, and
therefore also the observations. The normal probability plot is often used as a diagnostic
plot for this model assumption. If data are normally distributed and the model is correct,
then the residual values constitute a sample from a normal distribution. The residual
values are then ordered, and for each residual value, the expected value is then derived
according to its order and the normal distribution assumption. As the mean of the residual
values is zero, and the variance can be estimated by MSerr, a good approximation of the
expected value of the ith smallest observation is

√

MSerr

[

z

(

i− 0.375

n+ 0.25

)]

(2.12)

where z(A) is the (A)100 percentile of the standard normal distribution.

The residual values are then depicted as a function of their expected values, what should
lead to a set of points close to a straight line if the normality assumption holds.
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2.6.4 Independence of the observations

We further assume in an ANOVA model that the observations, and therefore also the
residual values, are independent from each other. Using a graphical presentation of the
residual values, we can evaluate whether this assumption is reasonable if the residual values
can be plotted sequentially in a meaningful way. For instance, in the case of a diagnostic
test, we can plot the residual values as a function of the time when the diagnostic test was
executed.

Example 2.8 Independence of observations of weight gain of chickens

To evaluate whether the observed weights change as a functon of the time of measurement,
we plot the residual values in Figure 2.4 according to the time of measurement. There
does not seem to be a trend in the residual values, which shows that the measurement
sequence has little to no effect on the weight.
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Figure 2.4: The residual values of the weights of four breeds of chicken as a functon of the
measurement sequence.

2.6.5 Outliers

An outlier is an observation with a large absolute value for the studentized residual; this
means that the model does not predict this observation well. We use the deleted studen-
tized residuals to detect outliers. To propose limits of acceptable values, the Bonferroni
principle can be used. The deleted studentized residuals are T distributed with n. − a− 1
degrees of freedom if the model is correct. As the total number of observations correspond
to n. and we want to use a two-sided interval (both very small negative and very large
positive deviations can be outliers), the limit values are T [1− α/2n.;n. − a− 1].
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Example 2.9 Outliers in observations of weight gain of chickens

To evaluate whether there are outliers in the observed weights of the 4 breeds, we plot the
deleted studentized residuals according to breed in Figure 2.5, together with the Bonferroni
corrected limit values. The limit values are given by T (0.99875; 15)=3.62. All observations
are located within the limits; no outliers are present in the data.
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Figure 2.5: The deleted studentized residuals of the weight gains of four chicken breeds
according to breed.

2.7 Notes

Note 2.1 Expected value operator E(.)

The operator E(.) is an important tool in statistical reasoning. We first give a formal
definition, thereafter a more intuitive explanation follows.

We can define the expected value for any random variable or function of random variables.
We first consider the random variable itself.

For a discrete random variable Y , taking values y1, . . . , ya with probabilities p1, . . . , pa,
the expected value is given by

E(Y ) =
a
∑

i=1

yipi (2.13)

which corresponds to a weighted mean of all possible values, with weights given to values
according to their probability of occurence.
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For instance, for Y ∼ B(n;π), we have

E(Y ) =
n
∑

i=1

yiP(Y = yi) =
n
∑

i=1

yi

(

n

yi

)

πyi(1− π)n−yi = nπ

For a continuous random variable Y with density function f(y), we have that

E(Y ) =

+∞
∫

−∞

yf(y)dy (2.14)

For instance, with Y ∼ N(µ, σ2), we have (without proof)

E(Y ) =

+∞
∫

−∞

yfY (y)dy

=

+∞
∫

−∞

y
1√
2πσ2

exp

(−(y − µ)2

2σ2

)

dy = µ

An alternative and more intuitive interpretation is based on sampling. Assume that a
sample of size n is taken from a normally distributed random variable Y ∼ N(µ, σ2).
Then the sample mean will tend to the expected value if the sample size n tends to
infinity. For small sample sizes, the sample means will be scattered around the expected
value. The expected value therefore corresponds to the sample mean: if the sample size
goes to N , the population size for a finite popultion, or to ∞ for an infinite population,
then the sample mean goes to the population mean.
The population variance is also defined in terms of the expected value operator, i.e.,

Var(Y ) = E(Y − E(Y ))2

For instance, for Y ∼ N(µ, σ2), we have (without proof)

Var(Y ) =

+∞
∫

−∞

(Y − E(Y ))2
1√
2πσ2

exp

(−(y − µ)2

2σ2

)

dy = σ2

Before continuing with the expected value of a function of random variables, we consider
the following important properties of the E(.) operator. With X and Y two random
variables and a and b two constants, we have

E(aX + bY ) = aE(X) + bE(Y )

This follows immediately from definitions 2.13 and 2.14.
Furthermore, as for Y ∼ N(µ, σ2), E(Y ) = µ, it follows that for eij ∼ N(0, σ2), E(eij) = 0.
Finally, for a constant, such as the global mean µ, we have that E(µ) = µ.
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We now apply the E operator to the sample variance, S2 =
∑

(Yi−Ȳ.)2

n−1 . We first rewrite
the numerator.

As
n
∑

i=1
(Yi − Ȳ.) =

n
∑

i=1
(Yi − µ)− (Ȳ − µ) we have

n
∑

i=1

(Yi − Ȳ )2 =

n
∑

i=1

(Yi − µ)2 +

n
∑

i=1

(Ȳ − µ)2 − 2

n
∑

i=1

(Yi − µ)(Ȳ − µ)

=
n
∑

i=1

(Yi − µ)2 + n(Ȳ − µ)2 − 2n(Ȳ − µ)2

=
n
∑

i=1

(Yi − µ)2 − n(Ȳ − µ)2

Taking the expected value, and using the fact that the variance of Ȳ. equals σ2/n (see
Note 2.2), we have

E

(

n
∑

i=1

(Yi − Ȳ.)
2

)

= E

(

n
∑

i=1

(Yi − µ)2

)

− E
(

n(Ȳ. − µ)2
)

= nσ2 − σ2 = (n− 1)σ2

Therefore, S2 is an unbiased estimator of σ2 as

E
(

S2
)

=

E

(

n
∑

i=1
(Yi − Ȳ.)

2

)

n− 1
=

(n− 1)σ2

n− 1
= σ2

Note 2.2 The variance of a linear combination of independently distributed
random variables

Assume that we have a series of mutually independent random variables X1, . . . , Xa.

The variance of a linear combination of these random variables,
a
∑

i=1
aiXi, is given by

a
∑

i=1
a2iVar(Xi).

A useful example is the sample mean. Assume that the sample mean is based on n
independent observations from the same probability or density function with Var(X),
then the variance of the sample mean is given by

Var(X̄.) = Var(
n
∑

i=1

Xi

n
) =

1

n2

n
∑

i=1

Var(X) =
Var(X)

n

In the case of mutually independent normally distributed random variables X1, . . . , Xa,
with Xi ∼ N(µi, σ

2
i ), i = 1, . . . , a, we have that a linear combination of these random

variables,
a
∑

i=1
aiXi, is also normally distributed,

a
∑

i=1
aiXi ∼ N(aiµi, a

2
iσ

2
i ).
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In the case of a sample mean of n independent observations from the normal distribution
N(µ, σ2), it follows that

X̄. ∼ N(µ, σ2/n) (2.15)

Note 2.3 Expected values of mean sum of squares

We derive the expected values of MSerr and MStrt.

We first rewrite the MSerr

MSerr =
1

n. − a

a
∑

i=1

ni
∑

j=1

(

Yij − Ȳi.
)2

=
1

n. − a

a
∑

i=1

(ni − 1)

ni
∑

j=1

(

Yij − Ȳi.
)2

ni − 1

=
1

n. − a

a
∑

i=1

(ni − 1)s2i

Taking the expected value, we find

E (MSerr) =
1

n. − a

a
∑

i=1

(ni − 1)E
(

s2i
)

= σ2 (2.16)

The derivation of the expected value of MStrt is somewhat more involved. We consider
the more simple case of balanced data, i.e., ni ≡ n, the same number of observations for
each treatment

MStrt =

n
a
∑

i=1

(

Ȳi. − Ȳ..
)2

a− 1

Since Yij = µi + eij it follows that

Ȳi. = µi + ēi. with ēi. = (

ni
∑

j=1

eij)/n

Ȳ.. = µ+ ē.. where ē.. = (

a
∑

i=1

ni
∑

j=1

eij)/an, µ = (

a
∑

i=1

µi)/a

We next rewrite part of the numerator
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a
∑

i=1

(

Ȳi. − Ȳ..
)2

=
a
∑

i=1

((µi + ēi.)− (µ. + ē..))
2

=
a
∑

i=1

((µi − µ) + (ēi. − ē..))
2

=
a
∑

i=1

(µi − µ)2 +
a
∑

i=1

(ēi. − ē..)
2 + 2

a
∑

i=1

(µi − µ)(ēi. − ē..) (2.17)

We now find the expected values of each term in the rhs of (2.17).
As the µi’s and µ are constants we have

E(
a
∑

i=1

(µi − µ)2) =
a
∑

i=1

(µi − µ)2 (2.18)

Consider the random variables ēi.. As eij ∼ N(0, σ2), it follows that ēi. ∼ N(0, σ2/n), and
its sample variance is given by

a
∑

i=1
(ēi. − ē..)

2

a− 1

It follows that

E









a
∑

i=1
(ēi. − ē..)

2

a− 1









=
σ2

n

and thus

E

(

a
∑

i=1

(ēi. − ē..)
2

)

=
(a− 1)σ2

n
(2.19)

Finally, for the last term in the rhs of (2.17) we have

E

(

a
∑

i=1

(µi − µ)(ēi. − ē..)

)

=
a
∑

i=1

(µi − µ) (E(ēi.)− E(ē..)) = 0 (2.20)

since both E(ēi.) and E(ēi.) are equal to zero.

Now we have
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E (MStrt) =
n

a− 1
E

(

a
∑

i=1

(

Ȳi. − Ȳ..
)2

)

=
n

a− 1
E

(

a
∑

i=1

(µi − µ)2

)

+ E

(

a
∑

i=1

(ēi. − ē..)
2

)

+ E

(

2

a
∑

i=1

(µi − µ)(ēi. − ē..)

)

=
n

a− 1

(

a
∑

i=1

(µi − µ)2 +
(a− 1)σ2

n

)

=
n

a− 1

a
∑

i=1

(µi − µ)2 + σ2

The second step is based on (2.17), the third step on plugging in (2.18-2.20)



Chapter 3

Fixed effects models with two

factors

3.1 Introduction

The one way ANOVA model is extended to the ANOVA model with two 2 factors, both
of interest to the investigator. In Section 3.2 we discuss the interpretation of the different
terms required in the model to describe the observations and we also explain why it is
more efficient to investigate the effect of different factors simultaneously. In Section 3.3
the model specification is given. In this chapter, we only discuss the analysis of variance
for balanced data, i.e., the same number of observations for each treatment combination.
In Section 3.4 we investigate the situation where more than 1 observation per treatment
combination is available, followed by Section 3.5 with only 1 and exactly 1 observation
per treatment combination.

3.2 Interpreting the terms in the fixed effects model with 2

factors

3.2.1 Introduction

We first investigate in this section which terms are required in the model to describe all
the observations when two factors are included simultaneously in a study. We often study
more than one factor in an experiment; we will demonstrate why it is a better strategy to
investigate factors simultaneously in an experiment. We first give two data examples that
will be used in the remainder of this section.

Example 3.1 Treatment effect on PCV for Boran and Holstein cows with try-
panosomosis

Trypanosomosis or sleeping sickness is still a common disease in certain regions in Africa.
Cows having trypanosomosis are often anemic, which is translated into a low packed
cell volume (PCV). We wish to investigate the effect of two different drugs, Berenil and
Samorin, on the evolution of the disease in two different cow breeds, Boran and Holstein.
We choose 6 Boran and 6 Holstein cows, and randomly allocate them to the two drugs

48
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in such a way that 3 Boran (Holstein) cows receive Berenil and 3 Samorin. The data are
presented in Table 3.1. We use as response variabele the difference in PCV before and
after the treatment.

Table 3.1: Packed cell volume (PCV) before and after treatment with Berenil or Samorin
in Holstein and Boran cows

Cowid Breed Drug PCV-before PCV-after PCV-difference

1 Boran Berenil 18.4 26.3 7.9
2 Boran Berenil 20.3 28.1 7.8
3 Boran Berenil 22.2 27.8 5.6
4 Boran Samorin 16.3 30.1 13.8
5 Boran Samorin 15.4 27.3 11.9
6 Boran Samorin 19.2 32.7 13.5
7 Holstein Berenil 21.3 28.3 7.0
8 Holstein Berenil 17.4 26.8 9.4
9 Holstein Berenil 18.2 25.8 7.6
10 Holstein Samorin 22.2 38.1 15.9
11 Holstein Samorin 19.8 32.3 12.5
12 Holstein Samorin 20.4 30.8 10.4

Example 3.2 Mastitis in cows as a function of parity and inoculation dose

Udder infection or mastitis is globally a common disease in cows. An efficient experi-
mental model is required to evaluate the effect of a vaccine in controled conditions. The
animals are experimentally infected with Escherichia Coli in such an experimental model
by infusing the bacteria in an udder quarter.

To develop such an experimental model, we need to assess the effect of two different fac-
tors: the inoculation dose and the parity. We make use of three different inoculation doses
in the experiment: 102 (low), 104 (medium) and 106 (high) colony forming units (CFU).
We also want to assess whether differences exist between heifers (cows which experienced
only 1 calving) and multiparous cows (cows which experienced more than 1 calving). We
wish to determine the most efficient setup with regard to inoculation dose and parity for
future vaccination experiments.

Six treatment combinations occur. For each treatment combination, we have two cows.
Thus, 6 heifers are randomly allocated to the 3 inoculation doses in such a way that each
dose appears twice (’restricted randomisation’). The 6 multiparous cows are assigned to
the 3 inoculation doses in a similar way.

The proportional reduction in milk production in the non-inoculated udder quarters 48
hours after infection is the response variable. The milk reductions for the different cows



CHAPTER 3. FIXED EFFECTS MODELS WITH TWO FACTORS 50

are given in Table 3.2.

Table 3.2: Milk production in non-infected udder quarters just before (Milk0) and 48
hours after (Milk48) infection as a function of the two factors parity and inoculation dose.

Cowid Parity Inoculation dose Milk0 Milk48 Reduction

1 heifer high 32.4 30.2 6.79
2 heifer high 33.6 32.3 3.87
3 heifer medium 29.3 20.5 30.03
4 heifer medium 34.4 21.3 38.08
5 heifer low 31.3 14.5 53.67
6 heifer low 35.3 13.4 62.04
7 multiparous high 42.4 39.5 6.84
8 multiparous high 43.3 39.7 8.31
9 multiparous medium 45.2 23.9 47.12
10 multiparous medium 44.4 24.8 44.14
11 multiparous low 41.5 6.7 83.86
12 multiparous low 45.2 4.1 90.93

An investigator sometimes decides to study two factors separately, i.e., vary one factor at
a time, keep the others constant. In the previous example, one could compare heifers and
multiparous cows first at the highest inoculation dose. If multiparous cows experience a
higher milk reduction (which makes them more appropriate for the experimental infection
model), then the investigator could compare the 3 inoculation doses only for multiparous
cows.

This ’one factor at a time’ approach is, however, inefficient, due to different reasons.

• In this approach, not all treatment combinations are evaluated. We might therefore
not choose the optimal treatment combination.

• We can not assess whether the two factors interact, i.e., whether the differences
between levels in 1 factor change according to the level of another factor. For in-
stance, large differences between heifers and multiparous cows could exist at the low
inoculation dose, but not so at the high inoculation dose.

• The treatment combinations are not completely randomly assigned because they
occur in two different experiments. For instance, in the experimental situation de-
scribed above, the heifers with the high inoculation dose can not be compared with
the multiparous cows with the low inoculation dose because the data come from two
different experiments.

• The ’one factor at a time’ approach is also logistically more demanding, because the
study consists of two parts, and the results from the first part must be available
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to proceed to the second part, as the choice of the treatment combinations in the
second part depend on the results observed in the first part.

Studying two factors simultaneously in an experiment has several advantages

• Despite the fact that all efforts are concentrated on just one factor in the ’one factor
at a time’ approach, it does not mean that more precise information is available about
that factor compared to the factorial experiment. This is linked to the phenomenon
of hidden replication. If the experiment is set up as in Example 3.2, we can still
compare 6 multiparous cows with 6 heifers, although we have also varied the dose
compared to the ’one factor at a time’ approach. We can use all that information,
if we can assume that there is no interaction between the two factors. This can
not be done if important interactions exist, because under those circumstances, the
difference between heifers and multiparous cows depends on the dose and it does not
make sense to consider a general effect of parity. The ’one factor at a time’ approach
is not capable of picking up such an interaction, which is even more problematic.

• The factorial experiment enables the investigator to test for interaction and quantify
the differences.

• The conclusions based on a factorial experiment are more general. In Example 3.2,
we can estimate a general difference between heifers and multiparous cows in the
absence of interaction, which is valid for the different inoculation dose included in the
trial. This is a more general conclusion than the conclusion based on the application
of one single inoculation dose.

3.2.2 Terms in the fixed effects model with 2 factors

We first discuss the different terms that appear in the factor effects model. Next, we will
make use of this information to construct the model in a formal way. We assume in this

section that all population means are known.

Population means of treatment combinations

The population mean of a treatment combination in a factorial study is denoted as µij ,
where i refers to the level of factor A (i = 1, . . . , a) and j to the level of factor B (j =
1, . . . , b). The population mean µ11 corresponds to the mean of all possible heifers infused
with a low dose. A set of population means µij for Example 3.2 is given in Table 3.3. The
population mean µ11 = 75 means for instance that the mean milk reduction for heifers
with a low inoculation dose equals 75%.
We can deduce from Table 3.3 that the milk reduction is equal for heifers and multiparous
cows. On the other hand, the milk reduction reduces with increasing inoculation dose.
Parity has therefore no effect in this example, whereas inoculation dose has. We come to
the same conclusion if we compare the column means and the row means.

Population means of factor levels

Based on the population means of the treatment combinations, we can define population
means for the different levels of a factor. This type of population means is important for
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Table 3.3: Population means for the reduction of milk production in non-infected udder
quarters as a function of the two factors parity and inoculation dose. There is no difference
between heifers and multiparous cows, but there is between inoculation doses.

Factor B - inoculation dose
Factor A - pariteit j = 1, low j = 2, medium j = 3, high Row mean
i = 1, heifer 75 (µ11) 42 (µ12) 3 (µ13) 40 (µ1.)
i = 2, multiparous 75 (µ21) 42 (µ22) 3 (µ22) 40 (µ2.)

Column mean 75 (µ.1) 42 (µ.2) 3 (µ.3) 40 (µ..)

the further development of the model.

The column mean of the jth column is given by

µ.j =

∑a
i=1 µij

a

which corresponds to the overal mean of the jth level of factor B. The population mean
µ.1, for instance, corresponds to the overal mean of cows with a low inoculation dose,
averaged over heifers and multiparous cows.

Similarly, we have the row mean of the ith row

µi. =

∑b
j=1 µij

b

The overal population mean can be expressed in different ways

µ.. =

∑a
i=1

∑b
j=1 µij

ab
=

∑a
i=1 µi.

a
=

∑b
j=1 µij

b
(3.1)

Main effects

In the factor effects model, we do not use the population means of the treatment combi-
nations as parameters, but rather parameters that code for the direct effects of the factor
levels. We can define such factors as follows.

We start with the effect of parity

αi = µi. − µ..

with αi the main effect of the ith level of factor A. For instance, α1 is the effect of heifer;
it corresponds to the difference between the overal population mean for heifers and the
overal population mean. For the mastitis example presented in Table 3.3, it follows that
α1 = α2 = 0.
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The main effects for the inoculation doses are defined in a similar fashion as

βj = µ.j − µ..

From (3.1) it follows that

a
∑

i=1

αi = 0
b
∑

j=1

βj = 0

Additive factor effects

When we consider the set of population means µij in Table 3.3, it seems to have an
interesting property. All the population means can be obtained by adding the respective
factor effects (one for parity and one for dose) to the overal population mean µ.., i.e.,

µij = µ.. + αi + βj

If all population means can be written in such a way, we can conclude that there is no
interaction between the two factors. It means that the effect of one factor does not de-
pend on the level of the other factor. This is indeed true for Table 3.3, as the difference
between heifers and multiparous cows is always zero, regardless the inoculation dose. Or
otherwise stated, the difference between two inoculation doses is the same, regardless the
parity. This can be also demonstrated graphically as in Figure 3.1. The fact that the
three lines corresponding to the three inoculation doses are parallel, signifies that there is
no interaction between parity and inoculation doses.
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No interaction effect: Additive factor effects

Figure 3.1: The representation of the population means of the mastitis experiment, without
parity effect but with strong inoculation dose effect. The parallelism of the lines means
that there is no interaction between the two factors.
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The lines are not necessarily having slope zero in the absence of interaction. An alternative
set of population means is given in Table 3.4 and depicted in Figure 3.2. The milk reduction
in this example reduces with increasing inoculation dose, and the line for the multiparous
cows lies higher than the one for heifers. Also in this example, there is no interaction
between the two factors because the difference between multiparous cows and heifers at
each each inoculation dose is exactly the same. This corresponds to the lines in Figure
3.2 being parallel.

Interacting factors

Two factors often interact. It means that the difference between two levels of one factor
depends on the level of the other factor. Such an example is given in Table 3.5.
It is clear from the table that the difference between heifers and multiparous cows de-
creases with higher inoculation dose. To describe the population means in Table 3.5 we
will need extra parameters.

There is no interaction between two factors when all the population means can be written
as

µij = µ.. + αi + βj

The factor effects are additive if that is the case, and there is no interaction between the
two factors. The difference between the population mean µij and the value µ.. + αi + βj ,
which is expected if the two factors are additive, is called the interaction effect, or the
interaction between the ith level of factor A and the jth level of factor B. It is denoted as
(αβ)ij . The interaction is formally defined as

(αβ)ij = µij − (µ.. + αi + βj) (3.2)

As the model is overparameterised, we also need to add restrictions for the interaction
terms.

The restrictions are given by (see Note ??)

a
∑

i=1

(αβ)ij = 0 j = 1, . . . , b

b
∑

j=1

(αβ)ij = 0 i = 1, . . . , a

from which follows that

a
∑

i=1

b
∑

j=1

(αβ)ij = 0

It is often easier to determine in a figure whether interactions occur. The population
means of Table 3.5 are depicted in Figure 3.3. It is clear that the two lines are not
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Table 3.4: Population means for reduction of the milk production in non-infected udder
quarters as a function of the two factors parity and inoculation dose. There is a difference
between heifers and multiparous cows, and between the three inoculation doses, but there
is no interaction between the two factors.

Factor B - inoculation dose
Factor A - parity j = 1, low j = 2, medium j = 3, high Row mean
i = 1 heifer 64 (µ21) 36 (µ22) 5 (µ22) 35 (µ2.)
i = 2 multiparous 74 (µ11) 46 (µ12) 15 (µ13) 45 (µ1.)
Column mean 69 (µ.1) 41 (µ.2) 10 (µ.3) 40 (µ..)
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Figure 3.2: The representation of the population means of the mastitis experiment, with
effect of parity and inoculation dose. The parallelism of the lines means that there is no
interaction between the two factors.
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parallel; it follows that the factors parity and inoculation dose are interacting for this set
of population means.
Interactions between two factors can take different forms; interaction occurs whenever the
difference between two levels of a factor is not the same at each level of the other factor.
Consider for instance the interaction presented in Figure 3.4. It can be deduced from
this figure that there is almost no difference between heifers and multiparous cows at the
medium inoculation dose, that the multiparous cows have a higher milk reduction at the
low dose, whereas this effect reverses at the high dose. It is extremely important in such
a scenario to test for interactions; if only the main effects of parity and inoculation dose

Table 3.5: Population means for reduction of the milk production in non-infected udder
quarters as a function of the two factors parity and inoculation dose. There is a difference
between heifers and multiparous cows, and between the three inoculation doses, and also
an interaction between the two factors.

Factor B - inoculation dose
Factor A - parity j = 1, low j = 2, medium j = 3, high Row means
i = 1 heifer 60 (µ11) 31 (µ12) 5 (µ13) 32 (µ1.)
i = 2 multiparous 86 (µ21) 45 (µ22) 7 (µ22) 46 (µ2.)
Column mean 73 (µ.1) 38 (µ.2) 6 (µ.3) 39 (µ..)
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Figure 3.3: Population means for reduction of the milk production in non-infected udder
quarters as a function of the two factors parity and inoculation dose. There is a difference
between heifers and multiparous cows, and between the three inoculation doses, and also
an interaction between the two factors. This corresponds to the fact that the lines are not
parallel.
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would be evaluated, we would conclude incorrectly that there are no effetcs of these two
factors.
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Figure 3.4: Population means for reduction of the milk production in non-infected udder
quarters as a function of the two factors parity and inoculation dose. The presence of in-
teraction makes that the milk reduction is highest for multiparous cows if a low inoculation
dose is used, and is highest for heifers if a high inoculation dose is used.

The interaction has to be taken into account when reporting the results when the interac-
tion presents itself as in Figure 3.4. We then have to give a description of the differences
between heifers and multiparous cows at each of the three inoculation doses separately, or
alternatively, the three different inoculation doses can be compared separately for heifers
and multiparous cows. This is obviously much more involved than the simple reporting
of the main effects of dose and parity. The interaction is sometimes so small to an extent
that it is negligible, and that the reporting of main effects remains relevant. We give as
an example the set of population means in Table 3.6. In this table, the difference be-
tween multiparous cows and heifers equals 11% for the high and low dose and 10% for
the medium dose. It therefore makes sense to report that the overal difference between
multiparous cows and heifers equals 10.66%; this estimate is a good description for each
of the doses.
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Table 3.6: Population means for reduction of the milk production in non-infected udder
quarters as a function of the two factors parity and inoculation dose. There is an effect of
dose and parity, and a small but negligible interaction between the two factors.

Factor B - inoculation dose
Factor A - parity j = 1, low j = 2, medium j = 3, high Row mean
i = 1 heifer 64 (µ21) 36 (µ22) 5 (µ22) 35 (µ2.)
i = 2 multiparous 75 (µ11) 46 (µ12) 16 (µ13) 45.7 (µ1.)
Column mean 69.5 (µ.1) 41 (µ.2) 10.5 (µ.3) 40.3 (µ..)
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Figure 3.5: Population means for reduction of the milk production in non-infected udder
quarters as a function of the two factors parity and inoculation dose. There is an effect of
dose and parity, and a small but negligible interaction between the two factors.
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3.3 Specification of the fixed effects model with 2 factors

The fixed effects model with 2 factors contains a factor A with a levels and a factor B
with b levels. All ab treatment combinations are included in the study, and the treatment
combination with level i of factor A and level j of factor B appears nij times. The

total number of observations equals n.. =
∑a

i=1

∑b
j=1 nij . The investigator is typically

interested in each specific level of the factors A and B. The cell means model can also be
used here in a similar way as in the previous chapter where it was defined for the fixed
effects model with 1 factor. This leads essentially to exactly the same model

Yijk = µij + eijk (3.3)

with Yijk the kth observation of the treatment combination with factor A at level i and
factor B at level j, µij the corresponding population mean and eijk the deviation of the
observation from its population mean. Furthermore, it is assumed that the eijk’s are
mutually independent and normally distributed N(0,σ2).
We rewrite this model as a factor effects model since we would like to evaluate the main
effects of the two factors, and also the interaction between the two factors

µij = µ.. + αi + βj + (αβ)ij (3.4)

where

µ.. =

∑a
i=1

∑b
j=1 µij

ab
αi = µi. − µ..

βj = µ.j − µ..

(αβ)ij = µij − µi. − µ.j + µ..

If we replace the population means in the cell means model (3.3) with (3.4), we obtain the
factor effects model

Yijk = µ.. + αi + βj + (αβ)ij + eijk (3.5)

where

µ.. the overall population mean (constant)
αi main effect of level i of factor A, i = 1, . . . , a

constants with restriction
∑a

i=1 αi = 0
βj main effect of level j of factor B, j = 1, . . . , b

constants with restriction
∑b

j=1 βj = 0

(αβ)ij interaction between level i of factor A and level j of factor B

constants with restrictions
∑a

i=1(αβ)ij = 0
∑b

j=1(αβ)ij = 0

eijk independent random error term ∼ N(0, σ2), k = 1, . . . , nij
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3.4 ANOVA for the fixed effects model with 2 factors

balanced data with replication

We investigate in this section the simple case of balanced data with replication, i.e.,
nij ≡ n, with n > 1.

The factor effects model was constructed in the previous section assuming that the pop-
ulation means were known. In practice, however, this is never the case and we use the
observations to estimate the parameters of the proposed model and to test particular hy-
potheses stated in terms of the population parameters. We first introduce new notation
for the fixed effects model with 2 factors.

The sum of the observations of the ith level of factor A and the jth level of factor B is
denoted by Yij., i.e.,

Yij. =
n
∑

k=1

Yijk

The corresponding sample mean is denoted by Ȳij., i.e.,

Ȳij. =
Yij.
n

The sum of the observations of the ith level of factor A is denoted by Yi.., i.e.,

Yi.. =
b
∑

j=1

n
∑

k=1

Yijk

with corresponding sample mean

Ȳi.. =
Yi..
bn

In a similar way, the sum of the observations of the jth level of factor B is denoted by Y.j.,
i.e.,

Y.j. =
a
∑

i=1

n
∑

k=1

Yijk

with corresponding sample mean

Ȳ.j. =
Y.j.
an

The sum of all observations is denoted by Y..., i.e.,

Y... =
a
∑

i=1

b
∑

j=1

n
∑

k=1

Yijk

which leads to the overall sample mean Ȳ..., i.e.,
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Ȳ... =
Y...
nab

We use the least squares (LS) criterion to obtain estimators of the parameters of the factor
effects model. We minimize the LS criterion

Q =
a
∑

i=1

b
∑

j=1

n
∑

k=1

(Yijk − µ.. − αi − βj − (αβ)ij)
2

subject to the restrictions

a
∑

i=1

αi = 0
b
∑

j=1

βj = 0
a
∑

i=1

(αβ)ij = 0
b
∑

j=1

(αβ)ij = 0

This leads to the following estimators (see Note ??)

µ̂.. = Ȳ...

α̂i = Ȳi.. − Ȳ...

β̂j = Ȳ.j. − Ȳ...
ˆ(αβ)ij = Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...

The predicted value of an observation is thus given by

Ŷijk = µ̂.. + α̂i + β̂j + ˆ(αβ)ij

= Ȳ... + (Ȳi.. − Ȳ...) + (Ȳ.j. − Ȳ...) + (Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...)

= Ȳij.

from which follows the estimated residual value

êijk = Yijk − Ȳij.

As before, we use sums of squares, more specifically ratios of mean sums of squares, to
test general hypotheses. We now derive the relevant sums of squares for the fixed effects
model with 2 factors.

The starting point is the deviation of an observation from the overall sample mean,
(Yijk − Ȳ...). This deviation can be rewritten as the sum of two terms

Yijk − Ȳ... =
(

Ȳij. − Ȳ...
)

+
(

Yijk − Ȳij.
)

(3.6)

where the first term of the rhs of (3.6) corresponds to the deviation of the estimated sam-
ple mean of a particular treatment combination from the overall sample mean, and the
seconde term to the deviation of the observation from its estimated sample mean, which
corresponds to the residual term êijk.
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If we square both sides of (3.6) sum these squared terms over all observations, we obtain

a
∑

i=1

b
∑

j=1

n
∑

k=1

(

Yijk − Ȳ...
)2

= n
a
∑

i=1

b
∑

j=1

(

Ȳij. − Ȳ...
)2

+
a
∑

i=1

b
∑

j=1

n
∑

k=1

(

Yijk − Ȳij.
)2

(3.7)

The term on the lhs of (3.7) measures the total variation of the observations, and is
therefore called the total sum of squares, SSTOT,

SSTOT =
a
∑

i=1

b
∑

j=1

n
∑

k=1

(

Yijk − Ȳ...
)2

(3.8)

The first term on the rhs of (3.7) measures in how far the different sample means differ
from one another and is therefore called the sum of squares of the treatment, SSTRT:

SSTRT = n
a
∑

i=1

b
∑

j=1

(

Ȳij. − Ȳ...
)2

(3.9)

The second term on the rhs of (3.7) measures in how far the different observations are
spread around their sample mean and is therefore called the sum of squares of the error,
SSERR,

SSERR =
a
∑

i=1

b
∑

j=1

n
∑

k=1

(

Yijk − Ȳij.
)2

(3.10)

The sum of squares of the treatment describes the variability of the sample means of
the treatment combinations; in a factor effects model, however, we wish to split up this
variability further into the main factor effects and possibly their interaction. Therefore,
the deviation of the sample mean from the overall mean is split up further as follows

Ȳij. − Ȳ... =
(

Ȳi.. − Ȳ...
)

+
(

Ȳ.j. − Ȳ...
)

+
(

Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...
)

(3.11)

We also take the squares on both sides and sum over all the observations. The cross
products disappear in the case of balanced data, i.e., the same number of replications for
each treatment combination. This is an important and useful property as the original sum
of squares of the treatment, SSTRT, can now be written as

SSBEH = SSA + SSB + SSAB (3.12)

where

SSA = nb
a
∑

i=1

(

Ȳi.. − Ȳ...
)2

(3.13)

SSB = na
b
∑

j=1

(

Ȳ.j. − Ȳ...
)2

(3.14)

SSAB = n

a
∑

i=1

b
∑

j=1

(

Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...
)2

(3.15)
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It follows from (3.7) and (3.12) that the sum of squares of the interaction can also be
obtained as

SSAB = SSTOT − SSERR − SSA − SSB

The sums of squares have the following meaning. SSA, the factor A sum of squares, mea-
sures de variability of the sample means of the different levels of factor A, Ȳi... The larger
the differences among them, the larger SSA will be. The same is true for SSB but then
for factor B. Finally SSAB measures the variability of the estimated interaction terms
(Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...). A large sum of squares SSAB reflects the presence of interaction
between the two factors.

The split up of SSTRT in the three sums of squaresmen SSA, SSB and SSAB is called an
orthogonal decomposition because the sum of the three sums of squares equals SSTRT.
We do not make use of these sums of squares themselves, but rather of the mean sums
of squares. The mean sums of squares are obtained by dividing the sums of squares by
their corresponding independent terms in the sum of squares. The number of independent
terms is called the degrees of freedom of the SS.

SSTRT consists of ab terms, of which ab − 1 are independent from each other as
∑a

i=1

∑b
j=1 n

(

Ȳij. − Ȳ...
)

= 0. The mean sum of squares of the treatment is therefore
given by

MSTRT =
SSTRT

ab− 1

SSERR consists of nab terms, but within each treatment combination we have that
∑n

k=1

(

Yijk − Ȳij.
)

= 0. Therefore, ab terms can be written as a function of the other
terms; this sum of squares has (n− 1)ab degrees of freedom, from which follows that

MSERR =
MSERR

(n− 1)ab

SSA and SSB consist of a, resp. b terms, but in each case one of the terms can be
written as a function of the other terms using the restriction

∑a
i=1

(

Ȳi.. − Ȳ...
)

= 0, resp.
∑b

j=1

(

Ȳ.j. − Ȳ...
)

= 0 . Therefore SSA and SSB have a− 1, resp. b− 1 degrees of freedom,
from which follows that

MSA =
SSA
a− 1

(3.16)

and

MSB =
SSB
b− 1

(3.17)

Finally there is SSAB, a sum of squares consisting of ab termes. These terms are subject
to b restrictions as

a
∑

i=1

(

Yij. − Ȳi.. − Ȳ.j. + Ȳ...
)

= 0 j = 1, . . . , b
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and another a restrictions

b
∑

j=1

(

Yij. − Ȳi.. − Ȳ.j. + Ȳ...
)

= 0 i = 1, . . . , a

but from the last set of restriction, only a−1 are independent as the last restriction follows
from the first b restrictions (see Note ??). Therefore, there are ab−(b+a−1)=(a−1)(b−1)
independent terms and we have for the mean sum of squares of the interaction

SSAB =
SSAB

(a− 1)(b− 1)
(3.18)

Why we rather use mean sums of squares becomes obvious when we look at the expected
values of these mean sums of squares

E(MSERR) = σ2

E(MSA) = σ2 + nb

∑a
i=1 α

2
i

a− 1

E(MSB) = σ2 + na

∑b
j=1 β

2
j

b− 1

E(MSAB) = σ2 + n

∑a
i=1

∑b
j=1(αβ)

2
ij

(a− 1)(b− 1)

The mean sum of squares for the factor A, resp. B, has the same expected value as MSERR

in the absence of an effect of factor A, resp. B. Similarly, the sum of squares for the in-
teraction MSAB has the same expected value as MSERR in the absence of an interaction
effect, i.e., all (αβ)ij ’s equal to zero.

In the statistical analysis of a two way ANOVA, we usually start with testing for interac-
tion.

Under the null hypothesis that the two factors do not interact, written formally as

H0 : all (αβ)ij = 0

the expected values of MSAB and MSERR are equal, and we thus expect for the ratio

F ∗ =
MSAB

MSERR

a value close to 1.

Under the alternative hypothesis

Ha : Not all (αβ)ij equal to zero
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the expected value of MSAB will be larger than the expected value of MSERR and we thus
expect for the ratio F ∗ a value larger than 1.

Under the null hypothesis, the ratio F ∗ has a F-distribution with (a−1)(b−1) and (n−1)ab
degrees of freedom

F ∗ ∼ F [(a− 1)(b− 1), (n− 1)ab]

We will mainly use the P-value to decide whether the null hypothesis can be rejected. The
P-value is given by

P(F[(a− 1)(b− 1), (n− 1)ab] ≥ f∗)
with f∗ the actual value of the test statistic. The null hypothesis is rejected when the
P-value is smaller than the significance level α.

If the null hypothesis of no interaction can not be rejected, we further test the factors A
and B.

Under the null hypothesis for the factor A, written as

H0 : α1 = α2 = . . . = αa = 0

the expected values of MSA and MSERR are equal, and we expect for the ratio

F ∗ =
MSA

MSERR

a value close to 1.

The ratio F ∗has an F-distribution with a− 1 and (n− 1)ab degrees of freedom under the
null hypothesis

F ∗ ∼ F [a− 1, (n− 1)ab]

The P-value is given by

P(F[a− 1, (n− 1)ab] ≥ f∗)
with f∗ the actual value of the test statistic. The null hypothesis is rejected when the
P-value is smaller than the significance level α.

A similar development follows for factor B.
The SS, degrees of freedom, MS, F-statistics and P-values are often presented in an analysis
of variance or ANOVA (’ANalysis Of VAriance’) table, as demonstrated in Example 3.3.

Example 3.3 Analysis of variance for trypanosomis data set

We analyse the data of Example 3.1. We fit the fixed effects model with the factors breed
and drug and their interaction as terms and the different in PCV before and after the
treatment as response variabele. The ANOVA table is given in Table 3.7.
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Table 3.7: ANOVA table for the effect of drug and breed on PCV in cows having try-
panosomosis.

Term SS df MS f∗ P(F≥ f∗)

Breed 0.441 1 0.441 0.150 0.711
Drug 89.107 1 89.107 29.710 0.0006
Breed*Drug 0.801 1 0.801 0.270 0.619
Error 23.993 8 2.999
Total 114.342 11

According to this ANOVA table, the P-value for drug, P(F [1, 8] ≥ 29.71)= 0.0006, is much
smaller than the default significance level of 5%. We can thus reject the null hypothesis
that Berenil and Samorin do not differ. There does not seem to be a difference between the
two breeds (P=0.711) and also the interaction between breed and drug is not significant
(P=0.619).

Specific comparisons in the fixed effects model with 2 factors without interac-
tion

The interpretation of the data is quite straightforward if the null hypothesis of no interac-
tion can not be rejected. In such a situation, we can assess the general effect of a particular
level of the factor A regardless the level of factor B. We therefore merely compare the
different levels of factor A with one another, and similarly for factor B. We then have
much fewer relevant comparisons compared to the situation where interaction is present.
The hypotheses can be defined in terms of the αi’s and βj ’s, or alternatively in terms of
the µi.’s and µ.j ’s because for instance µi. = µ.. + αi..

As seen before, the estimators of the µi.’s and µ.j ’s are based on the sample means Ȳi..
and Ȳ.j.. We therefore first derive the distributional properties of these estimators as we
will need them to define test statistics for hypotheses related to the µi.’s and µ.j ’s.

For the variance of sample mean we have

Var
(

Ȳi..
)

=
σ2

bn
Var

(

Ȳ.j.
)

=
σ2

an

as Ȳi.. and Ȳ.j. are based on an, resp. bn independent observations each with variance σ2.

The unknown σ2 is replaced by the unbiased estimator MSERR which leads to the sample
variances

S2
(

Ȳi..
)

=
MSERR

bn
S2
(

Ȳ.j.
)

=
MSERR

an
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Using the fact that

Ȳi.. − µi.

S
(

Ȳi..
) ∼ T [(n− 1)ab]

Ȳ.j. − µ.j

S
(

Ȳ.j.
) ∼ T [(n− 1)ab]

we can derive the confidence intervals for the parameters µi. and µ.j as

Ȳi.. ± t [1− α/2; (n− 1)ab] s
(

Ȳi..
)

Ȳ.j. ± t [1− α/2; (n− 1)ab] s
(

Ȳ.j.
)

In the remainder of this section, we will only discuss how hypotheses concerning linear
combinations of the set of parameters can be tested, as both contrasts and pairwise com-
parisons are special cases of linear combinations.

L refers to a linear combination of the population means of the different levels of the factor
A, µi., or the factor B, µ.j . We develop the hypothesis test here for factor A. The process
is identical for factor B.

A linear combination of the population means µi. is given by

L =
a
∑

i=1

ciµi.

An unbiased estimator of L is

L̂ =
a
∑

i=1

ciȲi..

Due to the independence of the Ȳi..’s it follows that

Var
(

L̂
)

=
a
∑

i=1

c2iVar
(

Ȳi..
)

=
σ2

bn

a
∑

i=1

c2i

The estimated variance of L̂ is then obtained by replacing σ2 with its unbiased estimator

S2
(

L̂
)

=
MSERR

bn

a
∑

i=1

c2i

As L̂ is also a linear combination of independent normally distributed variables it follows
that
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L̂− L

s
(

L̂
) ∼ T [(n− 1)ab]

The (1-α)100 % confidence interval is therefore given by

L̂± t[1− α/2; (n− 1)ab]s
(

L̂
)

Testing the hypothesis whether the linear combination equals a specific value c is written
as the set of hypotheses

H0 : L = c

and

Ha : L 6= c

We use the following test statistic to test this hypothesis

T ∗ =
L− c

s
(

L̂
)

which is distributed as T [(n− 1)ab] under the null hypothesis. The P-value is given by

2× P(T [(n− 1)ab] >| t∗ |)
We reject the bull hypothesis if the P-value is smaller than the significance level α.

Example 3.4 Comparing the levels of factors for the trypanosomosis data set

The number of meaningfull contrasts or linear combinations is quite limited as each factor
is only occuring at two levels. As an example, we will first test whether the effect of
Samorin is larger than that of Berenil. With µ1. (µ2.) the population mean of cows
treated with Samorin (Berenil), we test the following hypotheses

H0 : µ1. − µ2. = 0 versus Ha : µ1. − µ2. > 0

The estimated means are given by µ̂1. = Ȳ1.. = 13.00 and µ̂2. = Ȳ2.. = 7.55. It follows

that L̂ = 5.45 with s
(

L̂
)

= 0.999 and the test statistic thus equals 5.45. The P-value is

P(T [8] > 5.45). We can deduce from Table 9.2 that this P-value is smaller than 0.001,
which leads to rejection of the null hypothesis at a significance level of 5%. Remark that
testing a two-sided hypothesis with this technique leads to exactly the same P-value as
testing the main effect of drug using the F-test; there are only two levels and therefore we
test the same hypothesis in both cases.
We could alternatively test whether Samorin increases PCV at least 2% more compared
to Berenil; this could be a relevant hypothesis when Samorin would be a much more
expensive drug. We test
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H0 : µ1. − µ2. = 2 versus Ha : µ1. − µ2. > 2

The test statistic now equals 3.45, with corresponding P-value P(T [8] > 3.45). This P-
value is located between 0.001 and 0.005 and thus smaller than 0.05. We reject the null
hypothesis and conclude with a confidence of 95% that Samorin increases PCV at least
2% more than Berenil.

Specific comparisons in the fixed effects model with 2 factors in the presence
of interaction

The interpretation of the results is more complex if significant interaction is present. It is
no longer meaningfull to summarize the results in terms of general effects of a factor level
because the effect depends on the particular level of another factor. We therefore base our
comparisons on the µij ’s, the population means of the treatment combinations. A typ-
ical method of analysis evaluates the effects of factor A separately at each level of factor B.

We have already shown before that the estimators of the µij ’s are given by the sample
means Ȳij.. We now determine the distributional properties of these estimators as we will
need them to test hypotheses regarding the µij ’s.

The variance of these sample means is

Var
(

Ȳij.
)

=
σ2

n

as Ȳij. is based on n independent observations, each with variance σ2.

The unknown parameter σ2 is replaced by the unbiased estimator MSERR which leads to
the estimator of the variance

s2
(

Ȳij.
)

=
MSERR

n

Using the fact that

Ȳij. − µij

S
(

Ȳij.
) ∼ T [(n− 1)ab]

we can derive the confidence interval for µij as

Ȳij. ± t [1− α/2; (n− 1)ab] s
(

Ȳij.
)

Also here, we will only discuss how hypotheses concerning linear combinations of the set
of parameters can be tested. L refers to a linear combination of the population means of
the treatment combinations, µij ,
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L =
a
∑

i=1

b
∑

j=1

cijµij.

An unbiased estimator of L is

L̂ =
a
∑

i=1

b
∑

j=1

cij Ȳij.

Due to the independence of the Ȳij.’s it follows that

Var
(

L̂
)

=

a
∑

i=1

b
∑

j=1

c2ijVar
(

Ȳij.
)

=
σ2

n

a
∑

i=1

b
∑

j=1

c2ij

The estimated variance of L̂ is then obtained by replacing σ2 with its unbiased estimator

S2
(

L̂
)

=
MSERR

n

a
∑

i=1

b
∑

j=1

c2ij

As L̂ is also a linear combination of independent normally distributed variables it follows
that

L̂− L

s
(

L̂
) ∼ T [(n− 1)ab]

The 1-α 100 % confidence interval is therefore given by

L̂± t[1− α/2; (n− 1)ab]s
(

L̂
)

Testing that the linear combination equals a specific value c is based on the set of hy-
potheses

H0 : L = c

and

Ha : L 6= c

We use the following test statistic to test this hypothesis

T ∗ =
L− c

s
(

L̂
)
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which is distributed as T [(n− 1)ab] under the null hypothesis. The P-value is given by

2× P(T [(n− 1)ab] >| t∗ |)

Example 3.5 Comparing levels of one factor at a particular level of another
factor for the mastitis data set

We typically start the analysis of variance with testing the main effects and the interaction.
We fit the model with parity, dose and their interaction. The ANOVA table is presented
in Table 3.8.

Table 3.8: ANOVA tabel for the effect of parity and dose on the reduction of milk pro-
duction for cows having mastitis.

Term SS df MS f∗ P(F ≥ f∗)

Dose 8757.846 2 4378.923 257.06 <0.0001
Parity 626.670 1 626.670 36.79 0.0009
Dose*Parity 384.936 2 192.468 11.30 0.0092
Error 102.206 6 17.034
Total 9871.684 11

The P-values for dose (P<0.0001), parity (P=0.0009) and the interaction (P=0.0092) are
all smaller than 5%, and all have thus a significant effect. We will no longer consider the
main effects of dose and parity as the interaction is significant. Similarly, it does not make
sense anymore to test hypotheses regarding these main effects. We will now compare the
levels of one factor at a particular level of the other factor. We can, for instance, compare
the effect of doses separately in heifers and multiparous cows. We will consider here as an
example the differences between the three doses for the multiparous cows.

With µ11, µ12 and µ13 the population means of the multiparous cows treated with the
low, medium and high dose, resp., we can first test the three pairwise comparisons.
The estimated means are µ̂11 = Ȳ11. = 7.575, µ̂12 = Ȳ12. = 45.630 and µ̂13 = Ȳ13. = 87.395.
The differences, test statistics and P-values are given in Table 3.9.

Table 3.9: Pairwise comparisons between the three doses for multiparous cows.

Comparison Difference t∗ P(T [6] ≥ t∗)

High-Medium 41.765 10.12 <0.0001
High-Low 79.820 19.34 <0.0001
Medium-Low 38.055 9.22 <0.0001
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The P-values for the three pairwise comparisons are all smaller than the Bonferroni ad-
justed comparisonwise significance level of 0.05/3=0.0167. All doses differ from each other.

3.5 ANOVA for the fixed effects model with 2 factors

balanced data without replication

We investigate in this section a special case of balanced data with two factors; there is
only one observation per treatment combination, i.e., nij ≡ n, with n = 1.

Assume that we would fit the same model (3.5) as in the previous section, including the
main effects and the interaction

Yij = µij + eij

= µ.. + αi + βj + (αβ)ij + eij

Remark that we can drop the third index because we have only one observation for each
treatment combination.

According to the definition of SSERR in (3.10), this leads in this situation to

SSERR =
a
∑

i=1

b
∑

j=1

(

Yij − Ȳij
)2

but this is equal to zero because the average of the observations of the ijth treatment
combination is the observation Yij itself as there is only one such observation.

Similarly,

dfERR = ab(n− 1) = 0

from which follows that

MSERR =
MSERR

dfERR
=

0

0

which is undefined.

An alternative way to look at it is that each observation in model (3.5) is correctly esti-
mated by the model without any need for the random error term eij . Therefore, we do
not have any observations left to estimate the underlying variance of the observations, σ2,
which is required to define F-tests.

We can, however, fit a simplified model to such data. Assume that there is no interaction
between the two factors, i.e., (αβ)ij = 0, i = 1 . . . , a; j = 1, . . . , b, then the model simplifies
to



CHAPTER 3. FIXED EFFECTS MODELS WITH TWO FACTORS 73

Yij = µ.. + αi + βj + eij

Furthermore, the expected value of different sums of squares under the assumption of no
interaction are given by

E(MSA) = σ2 + nb

∑a
i=1 α

2
i

a− 1

E(MSB) = σ2 + na

∑b
j=1 β

2
j

b− 1

E(MSAB) = σ2

Therefore, E(MSAB) can now be used as an estimator of σ2 in the denominator of the
F-test.

Under the null hypothesis for the factor A, written as

H0 : α1 = α2 = . . . = αa = 0

the expected values of MSA and MSAB are equal and we have for the ratio

F ∗ =
MSA
MSAB

∼ F [a− 1, (n− 1)ab]

The P-value is given by P(F[a − 1, (n − 1)ab] ≥ f∗) with f∗ the actual value of the test
statistic. The null hypothesis is rejected when the P-value is smaller than the significance
level α.

A similar development follows for factor B.
This analysis is thus based on a model without interaction, and the interaction terms
thus become the random error terms. It is therefore to asess what happens when the
assumption of no interaction is violated. In such a case we have

E(MSAB) = σ2 + n

∑a
i=1

∑b
j=1(αβ)

2
ij

(a− 1)(b− 1)

We thus expect -and on average have- a larger value for E(MSAB) than the underlying
variance σ2. This results in a larger value of the denominator of the F-statistic, and a
smaller value for the F-statistic. We therefore will reject the null hypothesis less frequently
in the presence of interaction. This type of test is called a conservative test. In the
presence of interaction we pay the price of less power. Such a conservative test, however,
is acceptable as we can only draw a conclusion if the null hypothesis is rejected.

Example 3.6 ANOVA for the mastitis data set with one observation per treat-
ment combination

Assume that the mastitis experiment was set up with only one observation for each com-
bination of parity and inoculation dose, resulting in the data set presented in Table 3.10.
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Table 3.10: Milk production in non-infected udder quarters just before (Milk0) and 48
hours after (Milk48) infection as a function of the two factors parity and inoculation dose
with only one observation per treatment combination.

Cowid Parity Inoculation dose Milk0 Milk48 Reduction

1 heifer high 32.4 30.2 6.79
2 heifer medium 29.3 20.5 30.03
3 heifer low 31.3 14.5 53.67
4 multiparous high 42.4 39.5 6.84
5 multiparous medium 45.2 23.9 47.12
6 multiparous low 41.5 6.7 83.86

Table 3.11: ANOVA tabel for the effect of parity, dose and their interaction on the reduc-
tion of milk production for cows having mastitis.

Term SS df MS f∗ P(F ≥ f∗)

Dose 3838.62 2 1919.31 . .
Parity 373.35 1 373.35 . .
Dose*Parity 228.40 2 114.20 . .
Error 0 0 .
Total 4440.38 5

If we fit a model including the interaction terms, we obtain the ANOVA Table 3.11.
It is clear that no degrees of freedom are left over for the sum of squares of the error, and
therefore no F-tests can be shown for the factors of interest. Excluding the interaction
terms from the model leads to the ANOVA Table 3.12.

Table 3.12: ANOVA tabel for the effect of parity and dose on the reduction of milk
production for cows having mastitis.

Term SS df MS f∗ P(F ≥ f∗)

Dose 3838.62 2 1919.31 16.81 0.0562
Parity 373.35 1 373.35 3.27 0.2123
Error 228.40 2 114.20
Total 4440.38 5

The sum of squares of the error in Table 3.12 corresponds to the sum of squares of the
interaction in Table 3.11. Thus, we now have an error sum of squares and F-statistics
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can be obtained. It seems that neither parity (P=0.2123) nor dose (P=0.0562) have a
significant effect on milk reduction. We have to take into account, however, that there
is not much replication, which might be the main reason why we can not reject the null
hypothesis.

Although we can not test whether there is interaction using the full model (3.5), we can
fit a model which includes a specific type of interaction. Assume that the interaction is of
form

(αβ)ij = δαiβj

with D a constant, then we have the folllowing model

Yij = µ.. + αi + βj + δαiβj + eij (3.19)

In this model, we only use 1 degree of freedom to estimate the parameter δ for the inter-
action instead of the usual (a− 1)(b− 1) degrees of freedom for the full model. This leads
to the name of the test, the ”Tukey one degree of freedom” test.
This model can be fitted (given that a > 2 or b > 2).

We will test the hypothesis

H0 : δ = 0 versus Ha : δ 6= 0

The development of the test is based on similar reasoning as in the regression model

Yi = µ+ γxi + ei

For such a regression model, the sum of squares related to the parameter γ is given by

SSγ = γ̂2
∑

(xi − x̄.)
2 with γ̂ =

∑

(xi − x̄.)yi
∑

(xi − x̄.)2

Analogously, we find for slope δ in model (3.19) and assuming that the αi’s and βj ’s are
known

SSδ = δ̂2
a
∑

i=1

b
∑

j=1

(

αiβj −
∑a

i=1

∑b
j=1 αiβj

ab

)2

= δ̂2
a
∑

i=1

b
∑

j=1

(αiβj)
2

= δ̂2
a
∑

i=1

α2
i

b
∑

j=1

β2
j (3.20)

with
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δ̂ =

a
∑

i=1

b
∑

j=1

(

αiβj −
∑a

i=1

∑b
j=1

αiβj

ab

)

yij

a
∑

i=1

b
∑

j=1

(

αiβj −
∑a

i=1

∑b
j=1

αiβj

ab

)2

=

a
∑

i=1

b
∑

j=1
αiβjyij

a
∑

i=1
α2
i

b
∑

j=1
β2
j

(3.21)

Plugging in (3.21)in (3.20) and replacing the αi’s and βj ’s with their estimates

α̂i = ȳi. − ȳ..

β̂j = ȳ.j − ȳ..

we obtain

SSδ =

(

a
∑

i=1

b
∑

j=1
αiβjyij

)2

(

a
∑

i=1
α2
i

b
∑

j=1
β2
j

)2

a
∑

i=1

α2
i

b
∑

j=1

β2
j

=

(

a
∑

i=1

b
∑

j=1
αiβjyij

)2

a
∑

i=1
α2
i

b
∑

j=1
β2
j

=

(

a
∑

i=1

b
∑

j=1
(ȳi. − ȳ..)(ȳ.j − ȳ..)yij

)2

a
∑

i=1
(ȳi. − ȳ..)2

b
∑

j=1
(ȳ.j − ȳ..)2

The total sum of squares is now split up as

SSTOT = SSA + SSB + SSδ + SSERR (3.22)

with resulting relevannt mean sum of squares

MSδ = SSδ

MSERR =
SSERR

ab− a− b
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Under the null hypothesis H0 : δ = 0, the expected value of both MSδ and MSERR equals
σ2 and for the ratio of the two mean sums of squares we have

F ∗ =
MSδ

MSERR
∼ F [1, ab− a− b]

with P-value given by P(F[1, (ab− a− b)] ≥ f∗).

Example 3.7 Testing for interaction for the mastitis data set with one obser-
vation per treatment combination

We fit the model () to the mastitis data with dose and parity as main factors resulting in
the ANOVA Table 3.13.

Table 3.13: ANOVA tabel for the effect of parity, dose and simple interaction on the
reduction of milk production for cows having mastitis.

Term SS df MS f∗ P(F ≥ f∗)

Dose 3838.62 2
Parity 373.35 1
δ 227.56 1 227.56 270.75 0.038
Error 0.84 1 0.84
Total 4440.38 5

Note 3.4 Restrictions op de interactietermen

Note 3.5 Schatters van modelparameters

Note 3.6 Restrictions op de interactietermen

Note 3.7 sum of squaresmen gebaseerd op KKW gemiddelden



Chapter 4

Balanced block designs

4.1 Introduction

The block concept is introduced in this chapter, and its usefulness in experimental design
demonstrated for the case of balanced block designs. In Section 4.2 we further elaborate
on the block concept. Next, we move to the different types of balanced block designs
in Section 4.3, comprising the randomised and generalised complete block designs. The
analysis of variance of such data is explained in Section 4.4. We will fall back on the
balancedness of the data to use the orthogonal decomposition of the total sum of squares,
which leads to a similar analysis as the one for a fixed effects model with two factors.

4.2 The blocking principle in experimental design

Experimental units are often heterogeneous. This heterogeneity is one of the main factors
determining the power of the experiment, as it provides the background variability against
which the factor that was randomly assigned to the experimental unit needs to be assessed.
Sometimes, the heterogeneity can be decreased by consideing technical improvements. For
instance, the measuring device can be made more precise so that the measurement error,
and thus the variability between the experimental units, decreases.
Other factors, however, are closely linked to characteristics for the experimental unit and
make that the experimental units differ from each other. For instance, in animal experi-
ments, we might have animals coming from different litters, with litter having an important
effect on the variable of interest. As we need a sufficiently large number of animals, we
can not just do with one litter.
In cases where a factor that causes heterogeneity between experimental units is known,
such as the litter in the example above, the use of blocks makes that the part of the
heterogeneity between the experimental units related to that factor can be removed from
the background variability by making proper use of the blocking principle.

Experimental units which are more alike because they share the level of such a factor,
e.g., the same litter, are collected together in a block. Next, in the most optimal block
setting, all treatments occur at least once in each block, so that the comparison between
treatments can be based on experimental units residing in the same block, that is the

78
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mechanics by which the variability between blocks is taken out.

Blocking can be done in many different ways, and we consider some in Example 4.1 below.
Furthermore, we study in this chapter only designs in which all treatments occur at least
once in each block. Such blocking structurs, however, are not always possible in practice.
If less experimental units per block are available than the number of different treatments,
it is important that the treatments are randomly assigned in a particular fashion. The
balanced incomplete block (BIB) design is such a design with some optimal properties.
The BIB design, however, is not a balanced block design; its discussion is postponed to
Chapter ??.

In some other cases, there are two blocking factors. Although all treatments might occur
at least at each level of the two blocking factors separately, it is not necesarilly true for
the combinations of the two blocking factors. To handle two such blocking factors, we
need other designs with other analysis strategies. Latin square designs typically have two
blocking factors, and will be discussed in Chapter ??.

Example 4.1 Different block designs for the study of genetically modified rice
plants

We want to assess the effect of the insertion of a gene into a rice plant. Due to Mendelian
seggregation, rice plants come in three different types. The wild type (W), not contain-
ing the insertion at all; the haploid type (H), containing the insertion on one of the two
chromosomes, and finally the diploid type (D), containing the insertion on both of its
chromosomes. We want to compare these three plant types. We have a greenhouse that
can be split up in different ways to obtain plots and blocks. We assume that there is a
temperature gradient from the door of the greenhouse at the left towards the right side of
the greenhouse.

We consider first a situation in which we make 9 different plots. In the most simple
setting, we randomly assign each of the treatments to 3 plots, as shown in Figure 4.1.a.
This design leads to a proper statistical analysis due to the randomisation, but does not
take care of the temperature gradient in the greenhouse. In Figure 4.1.b, we present the
situation where we first make blocks, orthogonal to the source of variation, and next we
assign each of the three treatments to one of the plots within a block. This results in a
design called the randomised complete block design: each block contains each treatment
exactly once. Finally, assume there is also a light gradient going from front to rear, so
that an additional blocking factor needs to be taken into consideration. A proper design
for such situation is presented in Figure 4.1.c which will be discussed further in Chapter
??. For the time being, remark that for the blocks defined by the temperature gradient
solely, and also for the blocks defined by the light gradient solely, we have a randomised
complete block design, but obviously not for the combination of the blocks defined by
temperature gradient and light gradient, as there is then only one experimental unit for
such temperature-light combination.

Next consider the situation where we double the number of plots to 18. There are now dif-
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ferent options to assign treatments to plots. First consider Figure 4.2.a, where we actually
assigned a particular treatment randomly either to the two higher, middle or lower plots.
Therefore, the experimental unit consists here of a collection of two plots, and the two
plots provide two repeated measurements within that experimental unit. A much better
design is presented in Figure 4.2.b, where each treatment is assigned twice at random to
two plots. In this setting the plot is the experimental unit, and this type of design is called
a generalised complete block design because each treatment is assigned more than once
(but each treatment the same number of times) to a plot in a block. Alternatively, we
could have made 6 blocks, as in Figure 4.2.c, which makes the design again a randomised
complete block design.

Finally we consider the situation where the number of plots in a block is not a multiple
of the number of treatments. This can either mean that there are less or more treatments
than experimental units in a block. First consider Figure 4.3.a, where the blocks contain
only two experimental units. Remark that the random assignment has taken place in a
way so that each pairwise comparison appears the same number of times together in a
block, in this case twice. Such designs are called balanced incomplete block designs and
will be studied in Chapter ??. Alternatively, we might have more experimental units in
a block than treatments, but less than a multiple of the treatments. Instead of not using
these plots, it might be advantageous to repeat one of the treatments in each block. In
Figure 4.3.b, the treatment W is appearing twice in each block; as we want to compare
both H and D with W, it is best to have an extra replication for W. Compared to the BIB
design, this design is still a balanced block design, as will be discussed in Section 4.3.3.
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Figure 4.1: Three designs to compare treatments W, H and D with (a) completely ran-
domised design, (b) the randomised complete block design and (c) the latin square.

Temperature

Figure 4.2: Three designs to compare treatments W, H and D with (a) the randomised
complete block design with repeated measurements, (b) the generalised block design and
(c) the randomised complete block design.

Temperature

Figure 4.3: Two designs to compare treatments W, H and D with (a) balanced incomplete
block design and (b) a balanced block design with W appearing twice in each block.

Temperature
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4.3 Balanced block design types

Block designs come in many different forms. Once experimental units are grouped together
in blocks, we can talk about a block design. There are, however, some standard block
designs that are often used because they have some optimal properties. The randomised
complete block design is certainly the most popular block design. An extension of this
design is the generalised complete block design. We will only discuss balanced block
designs in this chapter and below we will study the requirements for a balanced block
design.

4.3.1 Randomised complete block design

The randomised complete block design is the simplest block design. The block has the same
number of experimental units as the number of treatments and each treatment is assigned
once and only once to one of the experimental units in a random fashion. Examples of
randomised complete block designs are given in Figures 4.1.b and 4.2.c. We present data
for the setup presented in Figure 4.1.b in Table 4.1.

Table 4.1: Randomised complete block design to compare different rice plant types with
1000-kernel weight as response variable

Block Plant type 1000-kernel weight (g)

1 W 22.4
1 H 24.8
1 D 25.2
2 W 27.3
2 H 28.6
2 D 28.4
3 W 24.5
3 H 25.8
3 D 26.2

4.3.2 Generalised complete block design

The generalised complete block design is an extension of the randomised complete block
design, the simplest block design. The number of experimental units in the block is a
multiple d of the number of treatments and each treatment is assigned d times to an
experimental unit in the block in a random fashion. So each treatment is appearing the
same number of times in each block. An example of a generalised complete block design
is given in Figure 4.2.b. We present data for the setup presented in Figure 4.2.b in Table
4.2.
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Table 4.2: Generalised complete block design to compare different rice plant types with
1000-kernel weight as response variable

1000-kernell gewicht (g)
Block Plant type Observation 1 Observation 2

1 W 22.4 23.0
1 H 24.8 25.2
1 D 25.2 25.6
2 W 27.3 26.3
2 H 28.6 27.5
2 D 28.4 29.3
3 W 24.5 24.8
3 H 25.8 25.9
3 D 26.2 25.3

4.3.3 Other balanced block designs

The requirements on the block size in the two previous block designs is quite strict. Each
block needs to contain exactly the same number of experimental units, and the numer of
experiments needs to be a multiple of the number of treatments. Blocks do not always
come in that format. In this section, we address the question whether it is possible to
set up balanced block designs that go beyond the RCB and GCB. We first need to ex-
plain what we mean by balanced block designs. A block design is balanced whenever we
cannot deduce information for the treatment effects by comparing block means. This can
be achieved by ensuring that the proportion of occurence of each treatment is the same
in each block. This principle allows us to have blocks of different sizes and also to have
blocks in which one treatment occurs more frequently than another treatment. Consider,
for instance, the design in Figure 4.3.b. The treatment W is appearing twice in each block,
its proportion of occurence in each block is therefore 50 %. The block mean differences
are not informative for the treatment effect. Compare this with the balanced incomplete
block design presented in Figure 4.3.a. The difference between the first block mean and
the second block mean contains information on the difference between W and H. There-
fore, this is not a balanced block design according to the definition above.

Using the principle of balance, we can also have blocks of different sizes. Consider the
design in Figure 4.4. We have three blocks, one of size 8 and two of size 4. This is a
balanced block design as the proportion of occurence of each treatment is the same in
each block.

We present data for the setup presented in Figure 4.3.c in Table 4.3.
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Figure 4.4: A balanced block design to compare treatments W, H and D. The block sizes
differ and W is occuring twice as much as the two other treatments. The proportion of
occurence of each treatment, however, is the same in each block.

Table 4.3: Generalised complete block design to compare different rice plant types with
1000-kernel weight as response variable

Block Plant type 1000-kernell gewicht (g)

1 W 22.4
1 W 23.0
1 H 24.8
1 D 25.2
2 W 27.3
2 W 26.3
2 H 28.6
2 D 28.4
3 W 24.5
3 W 24.8
3 H 25.8
3 D 26.2

4.4 ANOVA for balanced block designs

The analysis of variance of balanced block designs is rather straightforward because it is
similar to the analysis of variance of a fixed effects model with two factors. The orthogonal
decomposition of the total sum of squares and the corresponding ANOVA table is exactly
the same as in Section 3.5 for the randomised complete block design and as in Section 3.4
for the generalised complete block design. The main difference is the interpretation and
use of the block effect: we are not really interested in the block effect; we include it in the
model to get rid of part of the heterogeneity between the experimental units.
We start with the analysis of the randomised complete block design. Obviously, we can not
include an interaction term because there is only 1 observation for each block-treatment
combination. We therefore have to assume that blocks are not interacting with treatment
and have the following model
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Yij = µ.. + αi + βj + eij (4.1)

where

µ.. the overall population mean (constant)
αi main effect of level i of factor A, i = 1, . . . , a

constants with restriction
∑a

i=1 αi = 0
βj effect of block j, j = 1, . . . , b

constants with restriction
∑b

j=1 βj = 0

eij independent random error term ∼ N(0, σ2)

Under the null hypothesis for the factor A, written as

H0 : α1 = α2 = . . . = αa = 0

the expected values of MSA and MSAB are equal and we have for the ratio

F ∗ =
MSA
MSAB

∼ F [a− 1, (n− 1)ab]

The P-value is given by P(F[a − 1, (n − 1)ab] ≥ f∗) with f∗ the actual value of the test
statistic. The null hypothesis is rejected when the P-value is smaller than the significance
level α.

The block factor is normally not tested, but a similar test can be defined as for factor A
if required.

Example 4.2 ANOVA for randomised complete block design for rice plants
data set

We analyse the data of Table 4.1. We fit the model with plant type and block as factor
and 1000-kernel weight as response variable. The ANOVA table is given in Table 4.4
According to this ANOVA table, the P-value for plant type is 0.0118. We can thus reject

Table 4.4: ANOVA table for the effect of plant type on 1000-kernel weight taking into
account a block effect

Term SS df MS f∗ P(F≥ f∗)

Plant type 5.787 2 2.893 10.17 0.0118
Block 36.036 3 12.012 42.23 0.0002
Error 1.707 6 0.284
Total 43.529 11 3.957

the null hypothesis that there is no difference between the plant types.
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In the case of a generalised complete block design on the other hand, we have two or
more observations for each block-treatment combination. Therefore, the block-treatment
interaction can be added to the model resulting in the same model as in Section 3.3

Yijk = µ.. + αi + βj + (αβ)ij + eijk (4.2)

where

µ.. the overall population mean (constant)
αi main effect of level i of factor A, i = 1, . . . , a

constants with restriction
∑a

i=1 αi = 0
βj effect of block j, j = 1, . . . , b

constants with restriction
∑b

j=1 βj = 0

(αβ)ij interaction between level i of factor A and block j

constants with restrictions
∑a

i=1(αβ)ij = 0
∑b

j=1(αβ)ij = 0

eijk independent random error term ∼ N(0, σ2), k = 1, . . . , nij

F-tests and corresponding P-values are the same as in Section 3.4; its use is demonstrated
in Example 4.3

Example 4.3 ANOVA for generalised complete block design for rice plants data
set

We analyse the data of Table 4.2. We fit the model with plant type and block as factor
and 1000-kernel weight as response variable. The ANOVA table is given in Table 4.5.
According to this ANOVA table, the P-value for plant type is 0.0008. We can thus reject

Table 4.5: ANOVA table for the effect of plant type on 1000-kernel weight taking into
account a block effect

Term SS df MS f∗ P(F≥ f∗)

Plant type 14.131 2 7.065 17.77 0.0003
Block 53.202 3 17.734 44.61 <0.0001
Plant type*Block 3.416 6 0.569 1.43 0.280
Error 4.770 12 0.397
Total 75.518 23 3.283

the null hypothesis that there is no difference between the plant types.



Table 9.1: Standaard normale verdeling

biomedische statistiek 2013-2014/figtabz.eps
biomedische statistiek 2013-2014/figtabz.eps

Tweede decimaal van z
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
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Table 9.2: t-verdeling

P
vg .750 .900 .950 .975 .990 .995 .999

1 1.000 3.078 6.314 12.706 31.821 63.656 318.289
2 0.816 1.886 2.920 4.303 6.965 9.925 22.328
3 0.765 1.638 2.353 3.182 4.541 5.841 10.214
4 0.741 1.533 2.132 2.776 3.747 4.604 7.173
5 0.727 1.476 2.015 2.571 3.365 4.032 5.894
6 0.718 1.440 1.943 2.447 3.143 3.707 5.208
7 0.711 1.415 1.895 2.365 2.998 3.499 4.785
8 0.706 1.397 1.860 2.306 2.896 3.355 4.501
9 0.703 1.383 1.833 2.262 2.821 3.250 4.297

10 0.700 1.372 1.812 2.228 2.764 3.169 4.144
11 0.697 1.363 1.796 2.201 2.718 3.106 4.025
12 0.695 1.356 1.782 2.179 2.681 3.055 3.930
13 0.694 1.350 1.771 2.160 2.650 3.012 3.852
14 0.692 1.345 1.761 2.145 2.624 2.977 3.787
15 0.691 1.341 1.753 2.131 2.602 2.947 3.733
16 0.690 1.337 1.746 2.120 2.583 2.921 3.686
17 0.689 1.333 1.740 2.110 2.567 2.898 3.646
18 0.688 1.330 1.734 2.101 2.552 2.878 3.610
19 0.688 1.328 1.729 2.093 2.539 2.861 3.579
20 0.687 1.325 1.725 2.086 2.528 2.845 3.552
21 0.686 1.323 1.721 2.080 2.518 2.831 3.527
22 0.686 1.321 1.717 2.074 2.508 2.819 3.505
23 0.685 1.319 1.714 2.069 2.500 2.807 3.485
24 0.685 1.318 1.711 2.064 2.492 2.797 3.467
25 0.684 1.316 1.708 2.060 2.485 2.787 3.450
26 0.684 1.315 1.706 2.056 2.479 2.779 3.435
27 0.684 1.314 1.703 2.052 2.473 2.771 3.421
28 0.683 1.313 1.701 2.048 2.467 2.763 3.408
29 0.683 1.311 1.699 2.045 2.462 2.756 3.396
30 0.683 1.310 1.697 2.042 2.457 2.750 3.385
40 0.681 1.303 1.684 2.021 2.423 2.704 3.307
60 0.679 1.296 1.671 2.000 2.390 2.660 3.232
120 0.677 1.289 1.658 1.980 2.358 2.617 3.160
∞ 0.674 1.282 1.645 1.960 2.326 2.576 3.090



Tabel 9.2 voortgezet

P
vg 0.983 0.988 0.992 0.993 0.994 0.995 0.996

1 19.081 25.452 38.189 44.557 50.922 63.656 76.392
2 5.339 6.205 7.649 8.277 8.860 9.925 10.886
3 3.740 4.177 4.857 5.138 5.392 5.841 6.232
4 3.186 3.495 3.961 4.148 4.315 4.604 4.851
5 2.912 3.163 3.534 3.681 3.810 4.032 4.219
6 2.749 2.969 3.287 3.412 3.521 3.707 3.863
7 2.642 2.841 3.128 3.238 3.335 3.499 3.636
8 2.566 2.752 3.016 3.117 3.206 3.355 3.479
9 2.510 2.685 2.933 3.028 3.111 3.250 3.364

10 2.466 2.634 2.870 2.960 3.038 3.169 3.277
11 2.431 2.593 2.820 2.906 2.981 3.106 3.208
12 2.403 2.560 2.779 2.863 2.934 3.055 3.153
13 2.380 2.533 2.746 2.827 2.896 3.012 3.107
14 2.360 2.510 2.718 2.796 2.864 2.977 3.069
15 2.343 2.490 2.694 2.770 2.837 2.947 3.036
16 2.328 2.473 2.673 2.748 2.813 2.921 3.008
17 2.316 2.458 2.655 2.729 2.793 2.898 2.984
18 2.304 2.445 2.639 2.712 2.775 2.878 2.963
19 2.294 2.433 2.625 2.697 2.759 2.861 2.944
20 2.285 2.423 2.613 2.683 2.744 2.845 2.927
21 2.278 2.414 2.601 2.671 2.732 2.831 2.912
22 2.270 2.405 2.591 2.661 2.720 2.819 2.899
23 2.264 2.398 2.582 2.651 2.710 2.807 2.886
24 2.258 2.391 2.574 2.642 2.700 2.797 2.875
25 2.252 2.385 2.566 2.634 2.692 2.787 2.865
26 2.247 2.379 2.559 2.626 2.684 2.779 2.856
27 2.243 2.373 2.552 2.619 2.676 2.771 2.847
28 2.238 2.368 2.546 2.613 2.669 2.763 2.839
29 2.234 2.364 2.541 2.607 2.663 2.756 2.832
30 2.231 2.360 2.536 2.601 2.657 2.750 2.825
40 2.204 2.329 2.499 2.562 2.616 2.704 2.776
60 2.178 2.299 2.463 2.524 2.575 2.660 2.729
120 2.153 2.270 2.428 2.486 2.536 2.617 2.683
∞ 2.128 2.241 2.394 2.450 2.498 2.576 2.638
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Table 9.3: F-verdeling

Vrijheidsgraden teller
P 1 2 3 4 5 6 8 10 20 40 ∞

1 .750 5.83 7.50 8.20 8.58 8.82 8.98 9.19 9.32 9.58 9.71 9.85
.900 39.9 49.5 53.6 55.8 57.2 58.2 59.4 60.2 61.7 62.5 63.3
.950 161 199 216 225 230 234 239 242 248 251 254

2 .750 2.57 3.00 3.15 3.23 3.28 3.31 3.35 3.38 3.43 3.45 3.48
.900 8.53 9.00 9.16 9.24 9.29 9.33 9.37 9.39 9.44 9.47 9.49
.950 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.5 19.5
.990 98.5 99.0 99.2 99.3 99.3 99.3 99.4 99.4 99.4 99.5 99.5

3 .750 2.02 2.28 2.36 2.39 2.41 2.42 2.44 2.44 2.46 2.47 2.47
.900 5.54 5.46 5.39 5.34 5.31 5.28 5.25 5.23 5.18 5.16 5.13
.950 10.1 9.55 9.28 9.12 9.01 8.94 8.85 8.79 8.66 8.59 8.53
.990 34.1 30.8 29.5 28.7 28.2 27.9 27.5 27.2 26.7 26.4 26.1
.999 167 148 141 137 135 133 131 129 126 125.0 123.5

4 .750 1.81 2.00 2.05 2.06 2.07 2.08 2.08 2.08 2.08 2.08 2.08
.900 4.54 4.32 4.19 4.11 4.05 4.01 3.95 3.92 3.84 3.80 3.76
.950 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.96 5.80 5.72 5.63
.990 21.2 18.0 16.7 16.0 15.5 15.2 14.8 14.5 14.0 13.7 13.5
.999 74.1 61.2 56.2 53.4 51.7 50.5 49.0 48.1 46.1 45.1 44.0

5 .750 1.69 1.85 1.88 1.89 1.89 1.89 1.89 1.89 1.88 1.88 1.87
.900 4.06 3.78 3.62 3.52 3.45 3.40 3.34 3.30 3.21 3.16 3.11
.950 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.74 4.56 4.46 4.37
.990 16.3 13.3 12.1 11.4 11.0 10.7 10.3 10.1 9.55 9.29 9.02
.999 47.2 37.1 33.2 31.1 29.8 28.8 27.6 26.9 25.4 24.6 23.8

6 .750 1.62 1.76 1.78 1.79 1.79 1.78 1.78 1.77 1.76 1.75 1.74
.900 3.78 3.46 3.29 3.18 3.11 3.05 2.98 2.94 2.84 2.78 2.72
.950 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.06 3.87 3.77 3.67
.990 13.7 10.9 9.78 9.15 8.75 8.47 8.10 7.87 7.40 7.14 6.88
.999 35.5 27.0 23.7 21.9 20.8 20.0 19.0 18.4 17.1 16.4 15.7

7 .750 1.57 1.70 1.72 1.72 1.71 1.71 1.70 1.69 1.67 1.66 1.65
.900 3.59 3.26 3.07 2.96 2.88 2.83 2.75 2.70 2.59 2.54 2.47
.950 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.64 3.44 3.34 3.23
.990 12.2 9.55 8.45 7.85 7.46 7.19 6.84 6.62 6.16 5.91 5.65
.999 29.2 21.7 18.8 17.2 16.2 15.5 14.6 14.1 12.9 12.3 11.7

8 .750 1.54 1.66 1.67 1.66 1.66 1.65 1.64 1.63 1.61 1.59 1.58
.900 3.46 3.11 2.92 2.81 2.73 2.67 2.59 2.54 2.42 2.36 2.29
.950 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.35 3.15 3.04 2.93
.990 11.3 8.65 7.59 7.01 6.63 6.37 6.03 5.81 5.36 5.12 4.86
.999 25.4 18.5 15.8 14.4 13.5 12.9 12.0 11.5 10.5 9.92 9.33

9 .750 1.51 1.62 1.63 1.63 1.62 1.61 1.60 1.59 1.56 1.54 1.53
.900 3.36 3.01 2.81 2.69 2.61 2.55 2.47 2.42 2.30 2.23 2.16
.950 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.14 2.94 2.83 2.71
.990 10.6 8.02 6.99 6.42 6.06 5.80 5.47 5.26 4.81 4.57 4.31
.999 22.9 16.4 13.9 12.6 11.7 11.1 10.4 9.89 8.90 8.37 7.81

10 .750 1.49 1.60 1.60 1.59 1.59 1.58 1.56 1.55 1.52 1.51 1.48
.900 3.29 2.92 2.73 2.61 2.52 2.46 2.38 2.32 2.20 2.13 2.06
.950 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.98 2.77 2.66 2.54
.990 10.0 7.56 6.55 5.99 5.64 5.39 5.06 4.85 4.41 4.17 3.91
.999 21.0 14.9 12.6 11.3 10.5 9.93 9.20 8.75 7.80 7.30 6.76
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Tabel 9.3 voortgezet

Vrijheidsgraden teller
P 1 2 3 4 5 6 8 10 20 40 ∞

12 .750 1.46 1.56 1.56 1.55 1.54 1.53 1.51 1.50 1.47 1.45 1.42
.900 3.18 2.81 2.61 2.48 2.39 2.33 2.24 2.19 2.06 1.99 1.90
.950 4.75 3.89 3.49 3.26 3.11 3.00 2.85 2.75 2.54 2.43 2.30
.990 9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.30 3.86 3.62 3.36
.999 18.6 13.0 10.8 9.63 8.89 8.38 7.71 7.29 6.40 5.93 5.42

14 .750 1.44 1.53 1.53 1.52 1.51 1.50 1.48 1.46 1.43 1.41 1.38
.900 3.10 2.73 2.52 2.39 2.31 2.24 2.15 2.10 1.96 1.89 1.80
.950 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.60 2.39 2.27 2.13
.990 8.86 6.51 5.56 5.04 4.69 4.46 4.14 3.94 3.51 3.27 3.00
.999 17.1 11.8 9.73 8.62 7.92 7.44 6.80 6.40 5.56 5.10 4.60

16 .750 1.42 1.51 1.51 1.50 1.48 1.47 1.45 1.44 1.40 1.37 1.34
.900 3.05 2.67 2.46 2.33 2.24 2.18 2.09 2.03 1.89 1.81 1.72
.950 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.49 2.28 2.15 2.01
.990 8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.69 3.26 3.02 2.75
.999 16.1 11.0 9.01 7.94 7.27 6.80 6.20 5.81 4.99 4.54 4.06

18 .750 1.41 1.50 1.49 1.48 1.46 1.45 1.43 1.42 1.38 1.35 1.32
.900 3.01 2.62 2.42 2.29 2.20 2.13 2.04 1.98 1.84 1.75 1.66
.950 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.41 2.19 2.06 1.92
.990 8.29 6.01 5.09 4.58 4.25 4.01 3.71 3.51 3.08 2.84 2.57
.999 15.4 10.4 8.49 7.46 6.81 6.35 5.76 5.39 4.59 4.15 3.67

20 .750 1.40 1.49 1.48 1.47 1.45 1.44 1.42 1.40 1.36 1.33 1.29
.900 2.97 2.59 2.38 2.25 2.16 2.09 2.00 1.94 1.79 1.71 1.61
.950 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.35 2.12 1.99 1.84
.990 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.37 2.94 2.69 2.42
.999 14.8 10.0 8.10 7.10 6.46 6.02 5.44 5.08 4.29 3.86 3.38

30 .750 1.38 1.45 1.44 1.42 1.41 1.39 1.37 1.35 1.30 1.27 1.23
.900 2.88 2.49 2.28 2.14 2.05 1.98 1.88 1.82 1.67 1.57 1.46
.950 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.16 1.93 1.79 1.62
.990 7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.98 2.55 2.30 2.01
.999 13.3 8.77 7.05 6.12 5.53 5.12 4.58 4.24 3.49 3.07 2.59

40 .750 1.36 1.44 1.42 1.40 1.39 1.37 1.35 1.33 1.28 1.24 1.19
.900 2.84 2.44 2.23 2.09 2.00 1.93 1.83 1.76 1.61 1.51 1.38
.950 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.08 1.84 1.69 1.51
.990 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.80 2.37 2.11 1.80
.999 12.6 8.25 6.59 5.70 5.13 4.73 4.21 3.87 3.15 2.73 2.23

60 .750 1.35 1.42 1.41 1.38 1.37 1.35 1.32 1.30 1.25 1.21 1.15
.900 2.79 2.39 2.18 2.04 1.95 1.87 1.77 1.71 1.54 1.44 1.29
.950 4.00 3.15 2.76 2.53 2.37 2.25 2.10 1.99 1.75 1.59 1.39
.990 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.63 2.20 1.94 1.60
.999 12.0 7.77 6.17 5.31 4.76 4.37 3.86 3.54 2.83 2.41 1.89

100 .750 1.34 1.41 1.39 1.37 1.35 1.33 1.30 1.28 1.23 1.18 1.11
.900 2.76 2.36 2.14 2.00 1.91 1.83 1.73 1.66 1.49 1.38 1.21
.950 3.94 3.09 2.70 2.46 2.31 2.19 2.03 1.93 1.68 1.52 1.28
.990 6.90 4.82 3.98 3.51 3.21 2.99 2.69 2.50 2.07 1.80 1.43
.999 11.5 7.41 5.86 5.02 4.48 4.11 3.61 3.30 2.59 2.17 1.62

∞ .750 1.32 1.39 1.37 1.35 1.33 1.31 1.28 1.26 1.19 1.14 1.01
.900 2.71 2.30 2.08 1.95 1.85 1.77 1.67 1.60 1.42 1.30 1.01
.950 3.84 3.00 2.61 2.37 2.21 2.10 1.94 1.83 1.57 1.40 1.01
.990 6.64 4.61 3.78 3.32 3.02 2.80 2.51 2.32 1.88 1.59 1.03
.999 10.8 6.91 5.43 4.62 4.11 3.75 3.27 2.96 2.27 1.84 1.02
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Table 9.4: H∗ statistiek met 95 percentielen
onder de nulhypothese

r
vg 2 3 4 5 6 7 8 9 10 11 12
2 39.0 87.5 142 202 266 333 403 475 550 626 704
3 15.4 27.8 39.2 50.7 62.0 72.9 83.5 93.9 104 114 124
4 9.6 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4
5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9
6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7
7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8
8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7
9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34
12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48
15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93
20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59
30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39
60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36
∞ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00


